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The purpose of this paper is to present general relativistic cosmological hydrodynamic equations
in Newtonian-like forms using the post-Newtonian (PN) method. The PN approximation, based on
the assumptions of weak gravitational fields and slow motions, provides a way to estimate general
relativistic effects in the fully nonlinear evolution stage of the large-scale cosmic structures. We
extend Chandrasekhar’s first order PN (1PN) hydrodynamics based on the Minkowski background to
the Robertson-Walker background. We assume the presence of Friedmann’s cosmological spacetime
as a background. In the background we include the three-space curvature, the cosmological constant
and general pressure; we show that our 1PN approach is successful only for spatially flat cosmological
background. In the Newtonian order and 1PN order we include general pressure, stress, and flux.
The Newtonian hydrodynamic equations appear naturally in the 0PN order. The spatial gauge
degree of freedom is fixed in a unique manner and the basic equations are arranged without taking
the temporal gauge condition. In this way we can conveniently try alternative temporal gauge
conditions. We investigate a number of temporal gauge conditions under which all the remaining
variables are equivalently gauge-invariant. Our aim is to present the fully nonlinear 1PN equations
in a form suitable for implementation in conventional Newtonian hydrodynamic simulations with
minimal extensions. The 1PN terms can be considered as relativistic corrections added to the well
known Newtonian equations. The proper arrangement of the variables and equations in combination
with suitable gauge conditions would allow the possible future 1PN cosmological simulations to
become more tractable. Our equations and gauges are arranged for that purpose. We suggest ways
of controlling the numerical accuracy. The typical 1PN order terms are about 10−6

∼ 10−4 times
smaller than the Newtonian terms. However, we cannot rule out possible presence of cumulative
effects due to the time-delayed propagation of the relativistic gravitational field with finite speed,
in contrast to the Newtonian case where changes in the gravitational field are felt instantaneously.
The quantitative estimation of such effects is left for future numerical simulations.
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I. INTRODUCTION

The nonlinear evolution of large-scale cosmic structures is usually investigated within the framework of Newtonian
theory either in analytic studies or numerical simulations. Without investigating general relativistic effects, however,
it is not clear whether the Newtonian theory is sufficient to handle such large-scale cosmological structures. If we
regard Einstein’s gravity theory to be the correct framework on such cosmic scales, the relativistic effects should
exist always. The point is to which level we can practically ignore relativistic correction terms considering currently
available levels of observations and experiments. In case relativistic or nonlinear effects are not large, we have two
widely known ways to estimate relativistic effects: one is the perturbation approach [1–3], and the other one is the
post-Newtonian (PN) approximation [4–9].

In the perturbation study, we recently have investigated the weakly nonlinear regimes based on Einstein’s gravity.
We showed that, except for the gravitational wave coupling, the relativistic scalar-type perturbations coincide exactly
with the Newtonian ones up to the second order [10]. The pure relativistic correction terms appear in the third order.
These terms turn out to be independent of the horizon scale and small (∼ 10−5 order) compared with the second-order
Newtoninan/relativistic terms [11]. Our studies have shown, from the view point of Einstein’s gravity, that Newtonian
gravity is practically reliable near the horizon scale where structures are supposed to be weakly nonlinear. Therefore,
justifying its use in current large-scale numerical simulations which cover the Hubble volume. Considering the action-
at-a-distance nature of Newton’s gravity our result is a rather surprising one because the relativistic perturbation
theory is applicable on all scales including the super-horizon scale. Thus, our perturbation study ensures that to the
weakly nonlinear order Newtonian theory is reliable even near and beyond the horizon scale.

Now, how about situation in the nonlinear regime on scales smaller than the current horizon? On such scales the
structures could be in a fully nonlinear stage. However, if the relativistic gravity effect is small we can apply another
approximation scheme which is well developed to handle isolated bodies in Einstein’s theory: the PN approximation.
The PN approximation has been important to test Einstein’s gravity. It presents the relativistic equations in a form
similar to the well known Newtonian equations. In the PN method, by assuming that the relativistic effects are
small, we expand relativistic corrections in powers of v/c. In nearly virialized systems we have GM/(Rc2) ∼ (v/c)2.
Thus, the PN approximation is applicable in the slow motion and weak gravitational field regime. The first order
PN (1PN) approximation corresponds to adding relativistic correction terms of the order (v/c)2 to the Newtonian
order terms. In this approach we recover the well known Newtonian hydrodynamics equations in the 0PN order
[5]. The PN approximation is suitable to study systems in which Newtonian gravity has a dominant role, while the
relativistic effects are small but non-negligible. Well known applications include the precession of Mercury’s perihelion,
and various solar system tests of Einstein’s gravity theory like the light deflection [12]. Recent successful applications
include the generation of gravitational waves from compact binary objects, and the weakly relativistic evolution stages
of isolated systems of celestial bodies [13]. Another important application is relativistic celestial mechanics which is
required by recent technology driven precise measurements of the solar system bodies [14,15]. Notice that all these
applications are based on the PN approximation of isolated systems assuming the Minkowski background spacetime.

In this work on the cosmological PN approximation we assume the presence of a Robertson-Walker background.
Thus, we have the Friedmann world model built in as the background spacetime. We will show that the Newtonian
hydrodynamic equations come out naturally in the 0PN order which is the Newtonian limit. In the context of large-
scale cosmic structures PN effects could be essentially important in handling gravitational waves and gravitational
lensing effects. It is well known that Newtonian order treatment of the gravitational lensing shows only half of the
result from Einstein’s theory which is due to ignoring the 1PN correction in the metric. We also anticipate that
PN correction terms could affect the dynamic evolution of large-scale structures, especially considering the action-
at-a-distance nature of the Newtonian theory. This can be compared with the relativistic situation in which the
gravitational field propagates with finite speed. In this work we present the complete set of equations to study 1PN
effects in a cosmological context. The PN approach can be compared with our previous studies of the weakly nonlinear
regime based on the perturbation approach which is applicable in the fully relativistic regime and on all scales. In
comparison, although the PN equations are applicable in weak gravity regions inside the horizon, these are applicable
in fully nonlinear situation. Thus, the two approaches are complementary in enhancing our understanding of the
relativistic evolutionary aspects of the large-scale structure in the universe.

In the PN approximation we attempt to study the equations of motion and the field equations in Einstein’s gravity
in a Newtonian way as closely as possible. The Newtonian and post-Newtonian equations of motion follow from
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the energy-momentum conservation. The Newtonian order potential and 1PN order metric variables are determined
by Einstein’s equations in terms of the Newtonian matter and potential variables. Thus, the metric (or relativistic)
contributions are reinterpreted as small correction terms to the well known Newtonian hydrodynamic equations. The
Newtonian equations naturally follow in the 0PN order. The form of 1PN equations is affected by our choice of the
gauge conditions. In this work we take unique spatial gauge conditions which fix the spatial gauge modes completely;
under these spatial gauge conditions the remaining variables are all equivalently spatially gauge-invariant, see Sec.
V. The temporal gauge condition (slicing condition) will be deployed to handle the mathematical treatment of the
equations conveniently. We show how to choose the temporal gauge condition which also removes the temporal gauge
mode completely. Under each of such temporal gauge conditions the remaining variables are equivalently (spatially
and temporally) gauge-invariant. We arrange the equations and gauges so that the final form of equations is suitable
for numerical implementation in conventional cosmological hydrodynamic simulations.

We present basic quantities and the derivation of our 1PN equations in Sec. II and III. If the reader is more
interested in the application of the 1PN equations, the basic set of cosmological 1PN equations is summarized in Sec.
IV. The gauge issue is expounded in Sec. V. We discuss our results and several unresolved issues in Sec. VI.

II. BASIC QUANTITIES

A. Curvature

As the metric we take

g̃00 ≡ −
[

1 − 1

c2
2U +

1

c4

(

2U2 − 4Φ
)

]

+ O−6,

g̃0i ≡ − 1

c3
aPi + O−5,

g̃ij ≡ a2

(

1 +
1

c2
2V

)

γij + O−4, (1)

where x0 ≡ ct, and a(t) is the cosmic scale factor of the background Friedmann world model. Indices a, b, c, . . .
indicate spacetime, and i, j, k, . . . indicate space. Tildes indicate spacetime covariant quantities, i.e., spacetime indices
of quantities with tilde are raised and lowered with the spacetime metric g̃ab. The spatial index of Pi is based on
γij in raising and lowering indices with γij , an inverse of γij . γij is the comoving (time-independent) spatial part
of the Robertson-Walker metric, see Eq. (2) in [16]. In a flat Robertson-Walker background γij becomes δij if we
take Cartesian coordinates. Compared with our previous notations used in perturbation studies in [17], we set the

comoving part of the three-space background metric g
(3)
ij ≡ γij and use part of the Latin indices to indicate the space.

We are following Chandrasekhar and Nutku’s notation [5,7] extended to the cosmological situation, see also Fock [4].
The 2U/c2 term in g̃00 gives the Newtonian limit, and if we ignore all the Newtonian and post-Newtonian correction
terms we have the Robertson-Walker spacetime. Thus, our PN formulation is built on the cosmological background
spacetime. O−n indicates (v/c)−n and higher order terms that we ignore. The expansion in Eq. (1) is valid to 1PN
order [5]. Dimensions are as follows

[g̃ab] = [g̃ab] = 1, [γij ] = [γij ] = 1, [a] = 1, [c] = LT −1, [U ] = [V ] = [c2], [Pi] = [P i] = [c3], [Φ] = [c4], (2)

where L and T indicate the length and the time dimensions, respectively.
In our metric convention in Eq. (1) we have ignored the possible presence of 1

c2

(

2C,i|j + Ci|j + Cj|i
)

like terms in

g̃ij with Ci
|i ≡ 0 by choosing the spatial C-gauge conditions (C ≡ 0 ≡ Ci) which remove the spatial gauge mode

completely; this will be explained in Sec. V; a vertical bar indicates the covariant derivative based on γij . Under such
spatial gauge conditions, we can regard all our remaining PN variables as equivalently spatially gauge-invariant ones,
see Sec. V. We still have a freedom to take the temporal gauge condition which will be chosen later depending on
the mathematical simplification or feasibility of physical interpretation of the problem under consideration, see Sec.
V: in the perturbation approach we termed this a gauge-ready approach [18]. We also have ignored the spatially

tracefree-transverse part of the metric (Cij with Ci
i ≡ 0 ≡ Cj

i|j) because gravitational waves are known to show up

only from the 2.5PN order [8].
The inverse metric becomes
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g̃00 = −
[

1 +
1

c2
2U +

1

c4

(

2U2 + 4Φ
)

]

+ O−6,

g̃0i = − 1

c3

1

a
P i + O−5,

g̃ij =
1

a2

(

1 − 1

c2
2V

)

γij + O−4. (3)

The determinant of the metric tensor g̃ is

√

−g̃ = a3√γ

[

1 +
1

c2
(3V − U) + O−4

]

, (4)

where γ is the determinant of γij .
The connection is

Γ̃0
00 = − 1

c3
U̇ +

1

c5

(

−2Φ̇ +
1

a
P iU,i

)

+ L−1O−7,

Γ̃0
0i = − 1

c2
U,i −

1

c4
(2Φ,i + ȧPi) + L−1O−6,

Γ̃0
ij = a2

{

1

c

ȧ

a
γij +

1

c3

[(

V̇ + 2
ȧ

a
(U + V )

)

γij +
1

a
P(i|j)

]}

+ L−1O−5,

Γ̃i
00 =

1

a2

{

− 1

c2
U ,i +

1

c4

[

2 (U + V ) U ,i − 2Φ,i −
(

aP i
)·]

}

+ L−1O−6,

Γ̃i
0j =

1

c

ȧ

a
δi
j +

1

c3

[

V̇ δi
j −

1

2a

(

P i
|j − P

|i
j

)

]

+ L−1O−5,

Γ̃i
jk = Γ

(γ)i
jk +

1

c2

(

V,kδi
j + V,jδ

i
k − V ,iγjk

)

+ L−1O−4, (5)

where Γ
(γ)i

jk is the connection based on γij ; we introduce P(i|j) ≡ 1
2

(

Pi|j + Pj|i
)

and P[i|j] ≡ 1
2

(

Pi|j − Pj|i
)

. We have

U,0 = 1
c

∂U
∂t

≡ 1
c
U̇ .

The Riemann curvature is

R̃0
00i = − 1

c5

(

äPi +
1

a
U,i|jP

j

)

+ L−2O−7,

R̃0
0ij = L−2O−6,

R̃0
i0j =

1

c2

(

aäγij + U,i|j
)

+
1

c4

{

a2

[

V̇ + 2
ȧ

a
(U + V )

]·
γij +

[

−aȧU̇ + 2ȧ2 (U + V )
]

γij

−2U,(iV,j) − U,iU,j + U ,kV,kγij + 2Φ,i|j +
(

aP(i|j)
)·

}

+ L−2O−6,

R̃0
ijk =

1

c3
a2

[

2

(

V̇ +
ȧ

a
U

)

,[j

γk]i −
1

a
P[j|k]i +

2K

a
γi[jPk]

]

+ L−2O−5,

R̃i
00j =

1

c2

(

ä

a
δi
j +

1

a2
U ,i

|j

)

+
1

c4

{

[

V̈ +
ȧ

a

(

U̇ + 2V̇
)

]

δi
j −

1

a2

[

2 (U + V )U ,i

|j

+U ,iU,j + U ,iV,j + U,jV
,i − U ,kV,kδi

j − 2Φ,i

|j

]

+
1

2a2

[

a
(

P i
|j + P

|i
j

)]·
}

+ L−2O−6,

R̃i
0jk =

1

c3

[

2

(

V̇ +
ȧ

a
U

)

,[j

δi
k] −

1

a
P i

[j|k]

]

+ L−2O−5,

R̃i
j0k =

1

c3

[

V̇,jδ
i
k − V̇ ,iγjk +

ȧ

a

(

U,jδ
i
k − U ,iγjk

)

+
1

2a

(

P i
|j − P

|i
j

)

|k

]

+ L−2O−5,

R̃i
jkl = −2Kγj[kδi

l] +
1

c2
2

(

−ȧ2γj[kδi
l] + V,j|[kδi

l] − V ,i

|[kγl]j

)

+ L−2O−4. (6)
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It is convenient to have

P i
|jk ≡ P i

|kj − R
(γ)i

ljkP l, Pi|jk = Pi|kj + R
(γ)l

ijkPl,

R
(γ)i

jkl = K
(

δi
kγjl − δi

lγjk

)

, R
(γ)
ij = 2Kγij , R(γ) = 6K, (7)

where K indicates the comoving (time-independent) part of background spatial curvature with dimension [K] = L−2.
The Ricci curvature and the scalar curvature become

R̃0
0 =

1

c2

(

3
ä

a
+

∆

a2
U

)

+
1

c4

{

3V̈ + 3
ȧ

a

(

U̇ + 2V̇
)

+ 6
ä

a
U − 1

a2

[

U ,i (U − V ),i + 2V ∆U − 2∆Φ −
(

aP i
|i

)·]}

+L−2O−6,

R̃0
i =

1

c3

[

2

(

V̇ +
ȧ

a
U

)

,i

+
1

2a

(

P j

|ji
− ∆Pi − 2KPi

)

]

+ L−2O−5,

R̃i
0 = − 1

c3

1

a2

[

2

(

V̇ +
ȧ

a
U

),i

+
1

2a

(

P j i

|j − ∆P i + 2KP i
)

]

+ L−2O−5,

R̃i
j =

2K

a2
δi
j +

1

c2

[(

ä

a
+ 2

ȧ2

a2
− ∆ + 4K

a2
V

)

δi
j +

1

a2
(U − V )

|i
j

]

+ L−2O−4,

R̃ =
6K

a2
+

1

c2

[

6

(

ä

a
+

ȧ2

a2

)

+ 2
∆

a2
U − 4

∆ + 3K

a2
V

]

+ L−2O−4, (8)

where ∆ is a Laplacian operator based on γij .
The Weyl curvature is introduced as

C̃a
bcd ≡ R̃a

bcd − 1

2

(

δa
c R̃bd − δa

dR̃bc + g̃bdR̃
a
c − g̃bcR̃

a
d

)

+
1

6
R̃ (δa

c g̃bd − δa
d g̃bc) . (9)

To 1PN order we have

C̃0
00i = − 1

c3

K

a
Pi + L−2O−5,

C̃0
0ij = L−2O−6,

C̃0
i0j =

1

c2

[

1

2
(U + V ),i|j −

1

6
∆ (U + V ) γij

]

+ L−2O−4,

C̃0
ijk =

1

c3

a

2

[(

P l
|l[k − ∆P[k − 2KP[k

)

γj]i − 2P[j|k]i

]

+ L−2O−5,

C̃i
00j =

1

c2

1

a2

[

1

2
(U + V )

|i
j −

1

6
∆ (U + V ) δi

j

]

+ L−2O−4,

C̃i
0jk =

1

c3

1

2a

[(

P l
|l[k − ∆P[k + 2KP[k

)

δi
j] − 2P i

[j|k]

]

+ L−2O−5,

C̃i
j0k =

1

c3

1

4a

[

(

P l i
|l − ∆P i + 2KP i

)

γjk −
(

P l
|lj − ∆Pj + 2KPj

)

δi
k + 2

(

P i
|j − P

|i
j

)

|k

]

+ L−2O−5,

C̃i
jkl =

1

c2

[

2

3
∆ (U + V ) δi

[kγl]j + (U + V ),j|[k δi
l] − (U + V )

,i

|[k γl]j

]

+ L−2O−4. (10)

We can check the tracefree nature of the Weyl tensor: C̃b
bcd = 0 = C̃c

bcd. Here we encounter non-vanishing traces
involving K terms, like

C̃b
b0i = − 1

c3

K

a
Pi + L−2O−5, C̃c

0ci = − 1

c3

2K

a
Pi + L−2O−5, (11)

whereas

C̃c
0c0 = L−2O−4, C̃b

bij = L−2O−4, C̃c
ic0 = L−2O−5, C̃c

icj = L−2O−4. (12)

This indicates that the presence of K terms in the 1PN order appears to be not reliable. Later this point will be
resolved as we show that the K terms indeed can be related to the higher order terms in the PN expansion, see below
Eq. (88). Until we reach such a conclusion about the effect of K term we will keep it in our equations.
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B. Energy-momentum tensor

The normalized fluid four-vector ũa with ũaũa ≡ −1 gives, to 1PN order,

ũ0 = 1 +
1

c2

(

1

2
v2 + U

)

+
1

c4

[

3

8
v4 + v2

(

3

2
U + V

)

+
1

2
U2 + 2Φ − viPi

]

+ O−6,

ũi ≡ 1

c

1

a
viũ0,

ũ0 = −
{

1 +
1

c2

(

1

2
v2 − U

)

+
1

c4

[

3

8
v4 + v2

(

1

2
U + V

)

+
1

2
U2 − 2Φ

]}

+ O−6,

ũi = a

{

1

c
vi +

1

c3

[

vi

(

1

2
v2 + U + 2V

)

− Pi

]

}

+ O−5, (13)

where the index of vi is based on γij ; vi corresponds to the peculiar velocity field. The energy-momentum tensor is
decomposed into fluid quantities as follows

T̃ab = ˜̺c2

(

1 +
1

c2
Π̃

)

ũaũb + p̃ (ũaũb + g̃ab) + q̃aũb + q̃bũa + π̃ab. (14)

The energy density µ̃(≡ ˜̺c2 + ˜̺Π̃) is decomposed into the material energy density ˜̺c2 and the internal energy density

˜̺Π̃; p̃, q̃a, and π̃ab are the isotropic pressure, the flux, and the anisotropic stress, respectively. We have q̃aũa ≡ 0,
π̃abũ

b ≡ 0, π̃c
c ≡ 0, and π̃ab ≡ π̃ba, thus

q̃0 = −1

c

1

a
q̃iv

i, π̃0i = −1

c

1

a
π̃ijv

j , π̃00 =
1

c2

1

a2
π̃ijv

ivj . (15)

We introduce

q̃i ≡
1

c
aQi, π̃ij ≡ a2Πij , (16)

where indices of Qi and Πij are based on γij . We take q̃a and π̃ab to have post-Newtonian orders as introduced in Eq.
(16), see for example [19]. This will be justified by the energy conservation equation in the Newtonian context which
will be derived later, see Eq. (102). In a strictly single component situation we can always remove Qi by following the
fluid element. However, there exist situations where we have the additional flux terms present even when we follow
the fluid elements; the fundamental origin of such flux terms can be traced to the presence of additional components
in the energy-momentum. Thus, in our case it is more general and convenient to keep the flux terms separately. Up
to the 1PN order the condition π̃c

c ≡ 0 gives

Πi
i =

1

c2
Πijv

ivj . (17)

We also set

˜̺≡ ̺, Π̃ ≡ Π, p̃ ≡ p. (18)

Dimensions are as follows

[ũa] = [ũa] = 1, [T̃ab] = [T̃ a
b ] = [T̃ ab] = [p̃] = [q̃a] = [q̃a] = [π̃ab] = [˜̺c2] = ML−1T −2,

[vi] = [vi] = [c], [Π] = [c2], [Qi] = [Qi] = [cq̃a] = [̺c3], [Πij ] = [Πi
j ] = [Πij ] = [π̃ab] = [̺c2]. (19)

We have

T̃00 = ̺c2

{

1 +
1

c2

(

v2 − 2U + Π
)

+
1

c4

[

v2

(

v2 + 2V + Π +
p

̺

)

− 2UΠ + 2U2 − 4Φ

+
1

̺

(

2Qiv
i + Πijv

ivj
)

]

+ O−6

}

,

6



T̃0i = −a̺c2

{

1

c
vi +

1

c3

[

vi

(

v2 + 2V + Π +
p

̺

)

− Pi +
1

̺

(

Qi + Πijv
j
)

]

+ O−5

}

,

T̃ij = a2̺c2

{

1

c2

(

vivj +
p

̺
γij +

1

̺
Πij

)

+
1

c4

[

vivj

(

v2 + 2U + 4V + Π +
p

̺

)

+ 2V
p

̺
γij − 2v(iPj) +

2

̺
Q(ivj)

]

+ O−6

}

,

T̃ = −̺c2

[

1 +
1

c2

(

Π − 3
p

̺

)

+ O−6

]

. (20)

From Eq. (14) covariantly we have T̃ = − ˜̺c2
(

1 + 1
c2 Π̃

)

+ 3p̃.

C. Fluid-frame kinematic quantities

The projection tensor h̃ab based on the fluid-frame four-vector ũa is defined as

h̃ab ≡ g̃ab + ũaũb. (21)

The kinematic quantities are defined as [20]

θ̃ab ≡ h̃c
ah̃d

b ũc;d, θ̃ ≡ ũa
;a, σ̃ab ≡ θ̃(ab) −

1

3
θ̃h̃ab, ω̃ab ≡ θ̃[ab], ãa ≡ ˜̇̃ua ≡ ũa;bũ

b, (22)

where we have ũaθ̃ab ≡ 0, ũaσ̃ab ≡ 0, ũaω̃ab ≡ 0, ũaãa ≡ 0, and θ̃ ≡ θ̃a
a. The kinematic quantities θ̃, ãa, σ̃ab, and ω̃ab

are the expansion scalar, the acceleration vector, the shear tensor, and the vorticity tensor, respectively.
To 1PN order, the projection tensor becomes

h̃0
0 = − 1

c2
v2 − 1

c4

[

v2
(

v2 + 2U + 2V
)

− viPi

]

+ O−6,

h̃0
i = a

{

1

c
vi +

1

c3

[

vi

(

v2 + 2U + 2V
)

− Pi

]

}

+ O−5,

h̃i
0 = −1

c

1

a
vi

{

1 +
1

c2
v2 +

1

c4

[

v2
(

v2 + 2U + 2V
)

− vjPj

]

}

+ O−7,

h̃i
j = δi

j +
1

c2
vivj +

1

c4

[

vivj

(

v2 + 2U + 2V
)

− viPj

]

+ O−6. (23)

The kinematic quantities become

θ̃ij =
1

c
a

(

vi|j + ȧγij

)

+
1

c3
a

{

vj (avi)
·
+ vi|j

(

1

2
v2 + U + 2V

)

+ vk
(

vivk|j + vjvi|k
)

+a

[

V̇ +
ȧ

a
(U + 2V ) +

1

a
vkV,k +

1

2

ȧ

a
v2

]

γij + 2v[i (U + V ),j] − P[i|j]

}

+ L−1O−5, (24)

θ̃ =
1

c

(

3
ȧ

a
+

1

a
vi

|i

)

+
1

c3

[

3V̇ + 3
ȧ

a
U +

3

a
V,iv

i +
1

a
Uvi

|i +
1

2a3

(

a3v2
)·

+
1

2a

(

v2vi
)

|i

]

+ L−1O−5, (25)

σ̃ij =
1

c
a

(

v(i|j) −
1

3
vk

|kγij

)

+
1

c3
a

{

v(i

(

avj)

)·
+ v(i|j)

(

1

2
v2 + U + 2V

)

+ vk
(

vk|(ivj) + v(ivj)|k
)

−vivj

(

ȧ +
1

3
vk

|k

)

− 1

3
γij

[

1

2
a

(

v2
)·

+ (U + 2V ) vk
|k +

1

2

(

v2vk
)

|k

]

}

+ L−1O−5, (26)

ω̃ij =
1

c
av[i|j] +

1

c3
a

{

v[j

(

avi]

)·
+ v[i|j]

(

1

2
v2 + U + 2V

)

+ vk
(

vk|[jvi] + v[jvi]|k
)

+ 2v[i (U + V ),j] − P[i|j]

}

+L−1O−5, (27)
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ãi = − 1

c2
U,i

(

1 +
1

c2
v2

)

− 1

c4
2Φ,i +

[

1 +
1

c2

(

1

2
v2 + U

)](

∂

∂t
+

1

a
v · ∇

)

1

c
ũi +

1

c4

(

−v2V,i + vjP
j

|i

)

+L−1O−6. (28)

From ũcãc ≡ 0 and ũbθ̃ab ≡ 0 we have

ã0 = −1

c

1

a
viãi, θ̃0i = −1

c

1

a
vj θ̃ij , θ̃00 =

1

c2

1

a2
vivj θ̃ij , (29)

and similarly for σ̃0a and ω̃0a.
The electric and the magnetic parts of the Weyl (conformal) tensor are introduced as

Ẽab ≡ C̃acbdũ
cũd, H̃ab ≡

1

2
η̃ ef

ac C̃efbdũ
cũd, (30)

where η̃abcd ≡ 1√
−g̃

ǫabcd is the totally antisymmetric tensor density with ǫabcd, the totally antisymmetric Levi-Civita

symbol with ǫ0123 ≡ 1. Ẽab and H̃ab are symmetric, tracefree and ũaẼab = 0 = ũaH̃ab. To 1PN order we have

Ẽi
j = −C̃i

00j

= − 1

c2

1

a2

[

1

2
(U + V )

|i
j −

1

6
∆ (U + V ) δi

j

]

+ L−2O−4, (31)

H̃i
j = −1

2
ũ0ũ0

[

η̃i k
0l

(

C̃l
k0j −

1

c

1

a
vlC̃0

k0j

)

+ η̃i 0
lk

1

c

1

a
vlC̃k

00j

]

=
1

c3

1

2a3
ηikl

{[

1

2

(

Pm
|ml − ∆Pl + 2KPl

)

+
1

3
vl∆(U + V )

]

γkj + Pl|kj − vl (U + V )|kj

}

+ L−2O−5, (32)

where we introduced ηijk ≡ 1√
γ
ǫijk with ǫijk, the totally antisymmetric Levi-Civita symbol with ǫ123 ≡ 1. Thus

η̃0ijk =
√

γ
−g̃

ηijk . Indices of ηijk are based on γij . Ẽ0a follows from ũbẼab = 0 which gives Ẽ0a = −(ũi/ũ0)Ẽia =

−(vi/ca)Ẽia, thus Ẽ0i ∼ L−2O−3 and Ẽ00 ∼ L−2O−4. For nonvanishing K, H̃ab is not tracefree to L−2O−3, but as
we mentioned earlier the term involving K is already O−2 order higher, thus consistent.

D. Normal-frame kinematic quantities

The normalized normal-frame four-vector ña, which is normal to the space-like hypersurfaces, is defined as ñi ≡ 0
with ñaña ≡ −1. To 1PN order we have

ñ0 = 1 +
1

c2
U +

1

c4

(

1

2
U2 + 2Φ

)

+ O−6, ñi =
1

c3

1

a
P i + O−5,

ñ0 = −1 +
1

c2
U − 1

c4

(

1

2
U2 − 2Φ

)

+ O−6, ñi ≡ 0. (33)

By setting ũi ≡ 0 in Eq. (13) we also recover the normal vector, thus

vi =
1

c2
Pi + LT −1O−4, (34)

where vi is, say, the velocity of the normal frame vector. The projection tensor based on ña becomes

h̃ij = g̃ij , h̃0i = g̃0i, h̃00 = O−6, h̃i
j = δi

j , h̃i
0 = − 1

c3

1

a
P i + O−5, h̃0

i = 0 = h̃0
0. (35)

Kinematic quantities based on ña become

θ̃ =
1

c
3
ȧ

a
+

1

c3

(

3V̇ + 3
ȧ

a
U +

1

a
P i

|i

)

+ L−1O−5, (36)

σ̃ij =
1

c3
a

(

P(i|j) −
1

3
P k

|kγij

)

+ L−1O−5, (37)

ω̃ij = 0, (38)

ãi = − 1

c2
U,i −

1

c4
2Φ,i + L−1O−6. (39)
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σ̃0c follows from σ̃acñ
c ≡ 0, thus σ̃0i ∼ L−1O−6 and σ̃00 ∼ L−1O−9; we have ω̃ab = 0. Similarly, ã0 follows from

ãcñ
c ≡ 0, thus ã0 ∼ L−1O−5.

The electric and the magnetic parts of Weyl tensor based on ña give

Ẽi
j = −C̃i

00j

= − 1

c2

1

a2

[

1

2
(U + V )

|i
j −

1

6
∆ (U + V ) δi

j

]

+ L−2O−4, (40)

H̃i
j =

1

2
ñ0ñ0η̃

0iklC̃0
jkl

=
1

c3

1

2a3
ηikl

[

1

2

(

Pm
|ml − ∆Pl + 2KPl

)

γjk + Pl|kj

]

+ L−2O−5. (41)

Thus, Ẽi
j is the same in both frames to the 1PN order; compared with Eq. (32) H̃i

j differs. The nonvanishing K term

which causes H̃ab to be not tracefree to L−2O−3 can be ignored because the K term is of the O−2 order.

E. ADM quantities

In the Arnowitt-Deser-Misner (ADM) notation the metric and fluid quantities are [21]

g̃00 ≡ −N2 + N iNi, g̃0i ≡ Ni, g̃ij ≡ hij , (42)

ñ0 ≡ −N, ñi ≡ 0, ñ0 = N−1, ñi = −N−1N i, (43)

E ≡ ñañbT̃
ab, Ji ≡ −ñbT̃

b
i , Sij ≡ T̃ij , S ≡ hijSij , S̄ij ≡ Sij −

1

3
hijS, (44)

where Ni, Ji and Sij are based on hij as the metric, and hij is the inverse metric of hij . The extrinsic curvature is

Kij ≡ 1

2N
(Ni:j + Nj:i − hij,0) , K̄ ≡ hijKij , K̄ij ≡ Kij −

1

3
hijK̄, (45)

where indices of Kij are based on hij ; a colon ‘:’ denotes the covariant derivative based on hij with Γ
(h)i

jk ≡
1
2hil (hjl,k + hlk,j − hjk,l). The intrinsic curvatures are based on the metric hij

R
(h)i

jkl ≡ Γ
(h)i

jl,k − Γ
(h)i

jk,l + Γ
(h)m

jlΓ
(h)i

km − Γ
(h)m

jkΓ
(h)i

lm,

R
(h)
ij ≡ R

(h)k
ikj , R(h) ≡ hijR

(h)
ij , R̄

(h)
ij ≡ R

(h)
ij − 1

3
hijR

(h). (46)

A complete set of ADM equations will be presented in Sec. III C.
To the 1PN order we have

N = 1 − 1

c2
U +

1

c4

(

1

2
U2 − 2Φ

)

+ O−6,

N i = − 1

c3

1

a
P i

(

1 − 1

c2
U

)

+ O−7, Ni = − 1

c3
aPi

[

1 +
1

c2
(2V − U)

]

+ O−7,

hij = a2

(

1 +
1

c2
2V

)

γij + O−4, hij =
1

a2

(

1 − 1

c2
2V

)

γij + O−4, (47)

Γ
(h)i

jk = Γ
(γ)i

jk +
1

c2

(

V,kδi
j + V,jδ

i
k − V ,iγjk

)

+ L−1O−4, (48)

R
(h)
ij = R

(γ)
ij − 1

c2

(

V,i|j + γij∆V
)

+ L−2O−4, R(h) =
1

a2

[

6K − 1

c2
4 (∆ + 3K)V

]

+ L−2O−4, (49)

Kij = −1

c
aȧγij −

1

c3
a2

{[

V̇ +
ȧ

a
(U + 2V )

]

γij +
1

a
P(i|j)

}

+ L−1O−5,

K̄ = −1

c
3
ȧ

a
− 1

c3

[

3

(

V̇ +
ȧ

a
U

)

+
1

a
P i

|i

]

+ L−1O−5, (50)
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E = ̺c2

{

1 +
1

c2

(

v2 + Π
)

+
1

c4

[

v2

(

v2 + 2U + 2V + Π +
p

̺

)

+ 2UΠ − 2Piv
i +

1

̺

(

2Qiv
i + Πijv

ivj
)

]

+ O−6

}

,

Ji = a̺c2

{

1

c
vi +

1

c3

[

vi

(

v2 + U + 2V + Π +
p

̺

)

− Pi +
1

̺

(

Qi + Πijv
j
)

]

+ O−5

}

,

Sij = a2̺c2

{

1

c2

(

vivj +
p

̺
γij +

1

̺
Πij

)

+
1

c4

[

vivj

(

v2 + 2U + 4V + Π +
p

̺

)

+ 2
p

̺
V γij − 2v(iPj) +

2

̺
Q(ivj)

]

+ O−6

}

,

S = ̺c2

{

1

c2

(

v2 + 3
p

̺

)

+
1

c4

[

v2

(

v2 + 2U + 2V + Π +
p

̺

)

− 2Piv
i +

1

̺

(

2Qiv
i + Πijv

ivj
)

]

+ O−6

}

. (51)

III. DERIVATIONS

A. Equations of motion

Using Eq. (20) the energy and momentum conservation equations give

0 = −1

c
T̃ b

0;b

=
1

a3

(

a3σ
)·

+
1

a

[

σvi +
1

c2

(

Qi + Πi
jv

j
)

]

|i
+

1

c2
̺

[

V̇ +
1

a
vi (V − U),i +

ȧ

a
v2 − ṗ

̺

]

+ ̺T −1O−4, (52)

0 =
1

a
T̃ b

i;b

=
1

a4

{

a4

[

σvi +
1

c2

(

Qi + Πijv
j
)

]}·
+

1

a

{

σviv
j + Πj

i +
1

c2

[

Qjvi + Qiv
j − 2 (U + V )Πj

i

]

}

|j

+
1

a

(

1 − 1

c2
2U

)

p,i −
1

a

(

σU,i +
1

c2
̺v2V,i

)

+
1

c2
̺

{

vi

(

∂

∂t
+

1

a
v · ∇

)

(U + 3V ) +
2

a
[(U + V )U,i − Φ,i] −

1

a
(aPi)

· − 2

a
vjP[i|j] +

1

̺a
(U + 3V ),j Πj

i

}

+̺LT −2O−4, (53)

where

σ ≡ ̺

[

1 +
1

c2

(

v2 + 2V + Π +
p

̺

)]

. (54)

For Qi = 0 = Πij , V = U , a = 1 and γij = δij these equations reduce to Eqs. (64), (67) in Chandrasekhar [5].
Equation (52) can be written in another form as

1

a3

(

a3̺∗
)·

+
1

a

(

̺∗vi
)

|i +
1

c2

[

1

a

(

Qi
|i + Πi

jv
j

|i

)

+ ̺

(

∂

∂t
+

1

a
v · ∇

)

Π +

(

3
ȧ

a
+

1

a
∇ · v

)

p

]

+ ̺T −1O−4 = 0,

(55)

where

̺∗ ≡ ̺

√
−g̃

a3√γ
ũ0 ≡ ̺

[

1 +
1

c2

(

1

2
v2 + 3V

)

+ O−4

]

, (56)

with a3√γ the background part of
√
−g̃. This corresponds to Eq. (117) in Chandrasekhar [5]; see also Eq. (44) in [6].

The mass conservation (continuity) equation 0 = (˜̺ũc);c = ˜̺̇̃ + θ̃ ˜̺ gives
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0 = c (˜̺ũc);c = c
1√
−g̃

(

̺
√

−g̃ũc
)

,c

=
1

a3

(

a3̺∗
)·

+
1

a

(

̺∗vi
)

|i + ̺T −1O−4

=
1

a3

(

a3̺
)·

+
1

a

(

̺vi
)

|i +
1

c2
̺

(

∂

∂t
+

1

a
v · ∇

) (

1

2
v2 + 3V

)

+ ̺T −1O−4. (57)

Thus, if we assume the mass conservation, Eq. (55) gives

(

∂

∂t
+

1

a
v · ∇

)

Π +

(

3
ȧ

a
+

1

a
∇ · v

)

p

̺
= − 1

̺a

(

Qi
|i + Πi

jv
j

|i

)

+ T −1O−2. (58)

The specific entropy is introduced as T̃ dS̃ = d
(

Π̃/c2
)

+ p̃/c2d (1/ ˜̺), thus along the flow we have

T̃
˜̇̃
S =

1

c2

[

˜̃̇
Π + p̃ (1/ ˜̺)

·̃
]

=
1

c3

[(

∂

∂t
+

1

a
v · ∇

)

Π̃ +

(

3
ȧ

a
+

1

a
∇ · v

)

p̃

˜̺
+ T −1O−2

]

. (59)

This shows that for an adiabatic fluid flow the LHS of Eq. (58) vanishes; this also makes the RHS to vanish, which is
naturally required for an ideal fluid. According to Chandrasekhar [6]: “the conservation of mass and the conservation of

entropy are not independent requirements in the framework of general relativity. And the reason for their independence

in the Newtonian limit is that in this limit (“c2 → ∞”) [our Eq. (57)] reduces simply to the equation of continuity.”
In [22] Blanchet, et al. suggested to use the following new combination of variable instead of vi

v∗i ≡ 1

c

√
−g̃

a4√γ

1

̺∗
T̃ 0

i , (60)

which becomes

v∗i = vi +
1

c2

[

vi

(

1

2
v2 + U + 2V + Π +

p

̺

)

− Pi +
1

̺

(

Qi + Πijv
j
)

]

+ LT −1O−4. (61)

Notice that v∗i is directly related to the ADM flux vector in Eq. (51)

Ji = a̺cv∗i . (62)

Equation T̃ b
i;b = 0 can be written as follows

1

c

(√
−g̃
√

γ
T̃ 0

i

)·
+

(√
−g̃
√

γ
T̃ j

i

)

|j
=

1

2

√
−g̃
√

γ
T̃ abg̃ab|i

=

√
−g̃
√

γ
̺

{

U,i +
1

c2

[

U,i

(

v2 + Π
)

+ V,i

(

v2 + 3
p

̺

)

− vjPj|i + 2Φ,i

]

+ L2T −2O−4

}

, (63)

and we have
√
−g̃
√

γ
T̃ j

i = a3vj̺∗v∗i +

√
−g̃
√

γ

[

pδj
i + Πj

i +
1

c2

(

Qjvi − 2V Πj
i − Πikvjvk

)

+ LT −1O−4

]

. (64)

Thus, Eq. (63) can be arranged in the following form

1

a
(av∗i )

·
+

1

a
v∗i|jv

j =
1

a

{

U,i +
1

c2

[

U,i

(

1

2
v2 − U + Π

)

+ V,i

(

v2 + 3
p

̺

)

− vjPj|i + 2Φ,i

]}

− 1

̺∗a

{[

1 +
1

c2
(3V − U)

] [

pδj
i + Πj

i +
1

c2

(

Qjvi − 2V Πj
i − Πikvjvk

)

]}

|j

+
1

c2

v∗i
̺∗

[

1

a

(

Qj + Πj
kvk

)

|j
+ ̺

(

∂

∂t
+

1

a
v · ∇

)

Π +

(

3
ȧ

a
+

1

a
∇ · v

)

p

]

+ LT −2O−4, (65)

where the last line vanishes in an adiabatic ideal fluid.
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To the O−0 order, Eqs. (52), (53) give the Newtonian mass and momentum conservation equations, respectively

1

a3

(

a3̺
)·

+
1

a
∇i

(

̺vi
)

= 0, (66)

1

a
(avi)

·
+

1

a
vj∇jvi +

1

a̺

(

∇ip + ∇jΠ
j
i

)

− 1

a
∇iU = 0. (67)

Thus, we naturally have the Newtonian equations to 0PN order, e.g., see [23]. This can be compared with the situation
in perturbation approach where the Newtonian correspondence can be achieved only after suitable choice of different
gauges for different variables, thus being a non-trivial result even to the linear order in perturbation approach [3,24].
Equations (66), (67), as well as all the 1PN equations in this section, are fully nonlinear.

In the Friedmann background we set the PN variables U , Φ, Pi, V , vi, Qi, and Πij equal to zero, and set ̺ = ̺b,
Π = Πb, and p = pb, with µ ≡ ̺

(

c2 + Π
)

and σb ≡ ̺b

[

1 + 1
c2 (Πb + pb/̺b)

]

. Equations (52), (57) give

µ̇b + 3
ȧ

a
(µb + pb) = 0, (68)

˙̺b + 3
ȧ

a
̺b = 0. (69)

By subtracting the background part, Eq. (52) becomes

1

a3

[

a3 (σ − σb)
]·

+
1

a

[

σvi +
1

c2

(

Qi + Πi
jv

j
)

]

|i
+

1

c2
̺

[

V̇ +
1

a
vi (V − U),i +

ȧ

a
v2 − ṗ − ṗb

̺

]

+ ̺T −1O−4 = 0.

(70)

B. Einstein’s equations

We take Einstein’s equations in the form

R̃a
b =

8πG

c4

(

T̃ a
b − 1

2
T̃ δa

b

)

+ Λδa
b . (71)

Dimensions are as follows

[g̃ab] = 1, [R̃ab] = [R̃a
b ] = [R̃ab] = L−2, [T̃ab] = [T̃ ] = [̺c2] = ML−1T −2, [Λ] = L−2, [G̺] = T −2, (72)

where M indicates the dimension of mass. To 1PN order, Eqs. (8), (20) give

−Λ +
1

c2

(

3
ä

a
+

∆

a2
U + 4πG̺

)

+
1

c4

{

3V̈ + 3
ȧ

a

(

U̇ + 2V̇
)

+ 6
ä

a
U

− 1

a2

[

U ,i (U − V ),i + 2V ∆U − 2∆Φ −
(

aP i
|i

)·]
+ 8πG̺

(

v2 +
1

2
Π +

3

2

p

̺

)

}

= 0, (73)

1

c3

[

2

(

V̇ +
ȧ

a
U

)

,i

+
1

2a

(

P j

|ji
− ∆Pi − 2KPi

)

− 8πG̺avi

]

= 0, (74)

(

2K

a2
− Λ

)

δi
j +

1

c2

[(

ä

a
+ 2

ȧ2

a2
− ∆ + 4K

a2
V − 4πG̺

)

δi
j +

1

a2
(U − V )

|i
j

]

=
1

c4
8πG̺

[

vivj +
1

2

(

Π − p

̺

)

δi
j +

1

̺
Πi

j

]

, (75)

where Eqs. (73), (74), and (75) are R̃0
0, R̃0

i , and R̃i
j parts of Eq. (71), respectively.

We kept the O−4 term on the RHS of Eq. (75) in order to get the correct Friedmann background equation. To be
consistent, we also need to keep the LHS to O−4 which will explicitly involve 2PN order variables. But we do not
need such efforts for our background subtraction process because all the O−4 order terms involve PN order variables,
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which do not affect the Friedmann background. To get the Friedmann background we set U , Φ, Pi, V , vi, Qi, and
Πij equal to zero, and set ̺ = ̺b, Π = Πb, and p = pb. Then, Eqs. (73), (75) give

3

c2

{

ä

a
+

4πG

3

[

̺b

(

1 +
Πb

c2

)

+
3pb

c2

]

− Λc2

3

}

= 0, (76)

1

c2

{

ä

a
+ 2

ȧ2

a2
− 4πG

[

̺b

(

1 +
Πb

c2

)

− pb

c2

]

+
2Kc2

a2
− Λc2

}

δi
j = 0. (77)

Thus, we have

ä

a
= −4πG

3

[

̺b

(

1 +
Πb

c2

)

+
3pb

c2

]

+
Λc2

3
, (78)

ȧ2

a2
=

8πG

3
̺b

(

1 +
Πb

c2

)

− Kc2

a2
+

Λc2

3
, (79)

which are the Friedmann equations.
By subtracting the background equations, Eqs. (73)-(75) give

1

c2

[

∆

a2
U + 4πG (̺ − ̺b)

]

+
1

c4

{

3V̈ + 3
ȧ

a

(

U̇ + 2V̇
)

+ 6
ä

a
U − 1

a2

[

U ,i (U − V ),i + 2V ∆U − 2∆Φ −
(

aP i
|i

)·]

+8πG

[

̺v2 +
1

2
(̺Π − ̺bΠb) +

3

2
(p − pb)

]

}

= 0, (80)

1

c3

[

2

(

V̇ +
ȧ

a
U

)

,i

+
1

2a

(

P j

|ji
− ∆Pi − 2KPi

)

− 8πG̺avi

]

= 0, (81)

1

c2

{

−
[

∆ + 4K

a2
V + 4πG (̺ − ̺b)

]

δi
j +

1

a2
(U − V )

|i
j

}

= 0. (82)

To O−2 order, Eq. (80) gives

∆

a2
U = −4πG (̺ − ̺b) , (83)

which is Poisson’s equation in Newton’s gravity. Notice that in the Newtonian limit of our PN approximation the
homogeneous part of density distribution is subtracted. This revised form of Poisson’s equation is consistent with
Newton’s gravity, and in fact, is an improved form avoiding Jeans’ swindle [25]. The decomposition of Eq. (82) into
trace and tracefree parts gives

∆ + 3K

a2
V = −4πG (̺ − ̺b) , (84)

(U − V )
|i

j = KV δi
j . (85)

Thus, compared with Eq. (83), for K = 0 we have

V = U, (86)

where we ignored any surface term S with ∆S ≡ 0 and S,i|j ≡ 0. Notice that we have V = U even in the presence
of anisotropic stress; this differs from the situation in the perturbation approach where U and V in the zero-shear
gauge (setting P i

|i = 0, see later) are different in the presence of the anisotropic stress [3]. For later use we take a

divergence of Eq. (81) which gives

∆

a2

(

V̇ +
ȧ

a
U

)

= 4πG
1

a

(

̺vi
)

|i +
K

a3
P i

|i. (87)

Here, we reached a point to address the issue related to the background curvature in our PN approach. By taking
a divergence of Eq. (81) and using Eqs. (83), (84), and (66) we have

13



1

c3

(

−6KV̇ − 2K

a
P i

|i

)

= 0, (88)

which is apparently inconsistent. This is because the K term in Eq. (79) is related to the c−2 higher order terms in
the background Friedmann equation. We can check this point by expanding the equation to 2PN order; in that order
we can find that the above term can be removed by subtracting the background equation. Thus, it looks like our PN
approximation is properly applicable only for K = 0. In this sense, our K terms do not have significance because
these are related to O−2 order higher terms through the background equation. At the moment, it is unclear whether
this limitation of our 1PN approach to a nearly flat background is due to our subtraction process of the background
equations (which spread over different PN orders), or intrinsic to the whole PN approximation. Meanwhile, recent
observations favour the flat background world model with non-vanishing cosmological constant. We include the
cosmological constant in our PN approximation which appears only in the background Friedmann equations. Ignoring
K term we simply have V = U .

C. ADM approach

The ADM equations are [21,3,17]

R(h) = K̄ijK̄ij −
2

3
K̄2 +

16πG

c4
E + 2Λ, (89)

K̄j
i:j −

2

3
K̄,i =

8πG

c4
Ji, (90)

K̄,0N
−1 − K̄,iN

iN−1 + N :i
iN

−1 − K̄ijK̄ij −
1

3
K2 − 4πG

c4
(E + S) + Λ = 0, (91)

K̄i
j,0N

−1 − K̄i
j:kNkN−1 + K̄jkN i:kN−1 − K̄i

kNk
:jN

−1

= K̄K̄i
j −

(

N :i
j −

1

3
δi
jN

:k
k

)

N−1 + R̄
(h)i

j −
8πG

c4
S̄i

j, (92)

E,0N
−1 − E,iN

iN−1 − K̄

(

E +
1

3
S

)

− S̄ijK̄ij + N−2
(

N2J i
)

:i
= 0, (93)

Ji,0N
−1 − Ji:jN

jN−1 − JjN
j
:iN

−1 − K̄Ji + EN,iN
−1 + Sj

i:j + Sj
i N,jN

−1 = 0. (94)

Using the ADM quantities presented in Sec. II E we can show that Eqs. (89)-(94) give the same equations we already
have derived from Einstein’s equations and the energy and momentum conservations. Equation (89) gives Eqs. (79),
(84). Equation (90) gives Eq. (81). Equation (91) gives Eq. (73). Equation (92) gives the tracefree part of Eq.
(82). Equation (93), (94) give Eqs. (52), (53), respectively. The ADM equations are often used in the PN approach
[22,28,13,26]. We present the ADM approach because the ADM equations show the fully nonlinear structure of
Einstein’s gravity in a form suitable for numerical treatment. In fact, Eq. (65) can be derived from Eq. (94) using the
identification made in Eq. (62).

IV. 1PN EQUATIONS

A. Complete equations to 1PN order

Here we summarize the complete set of equations valid to 1PN order in the cosmological situation. The background
variables a, ̺b, Πb and pb are provided by solving Eqs. (68), (69), (78), and (79)

ä

a
= −4πG

3

[

̺b

(

1 +
Πb

c2

)

+
3pb

c2

]

+
Λc2

3
, (95)

ȧ2

a2
=

8πG

3
̺b

(

1 +
Πb

c2

)

− Kc2

a2
+

Λc2

3
, (96)

µ̇b + 3
ȧ

a
(µb + pb) = 0, (97)

˙̺b + 3
ȧ

a
̺b = 0, (98)

14



where µb ≡ ̺bc
2
(

1 + Πb/c2
)

. In Eqs. (95)-(97) only two are independent, and from Eqs. (97), (98) we have ̺bΠ̇b +
3(ȧ/a)pb = 0.

To the Newtonian order we have Eqs. (66), (67), and (83)

1

a3

(

a3̺
)·

+
1

a
∇i

(

̺vi
)

= 0, (99)

1

a
(avi)

·
+

1

a
vj∇jvi +

1

a̺

(

∇ip + ∇jΠ
j
i

)

− 1

a
∇iU = 0, (100)

∆

a2
U + 4πG (̺ − ̺b) = 0. (101)

In the Newtonian case energy conservation and mass conservation provide an additional equation which is Eq. (58)

(

∂

∂t
+

1

a
v · ∇

)

Π +

(

3
ȧ

a
+

1

a
∇ · v

)

p

̺
+

1

̺a

(

Qi
|i + Πi

jv
j

|i

)

= 0. (102)

In the non-expanding background this equation gives the well known energy conservation equation in the Newtonian
theory, see for example Eq. (2.36) in [27]. The Newtonian order hydrodynamic equations are valid in the presence of
general background curvature K.

In the following we set K = 0 to the 1PN order, because our PN expansion fails to apply in the presence of K term.
Thus we have V = U . The energy and the momentum conservation equations valid to 1PN order are derived in Eqs.
(70), (53), and these are

1

a3

(

a3σ
)·

+
1

a

[

σvi +
1

c2

(

Qi + Πi
jv

j
)

]

|i
+

1

c2
̺

(

U̇ +
ȧ

a
v2 − ṗ

̺

)

= 0, (103)

1

a4

{

a4

[

σvi +
1

c2

(

Qi + Πijv
j
)

]}·
+

1

a

[

σviv
j + Πj

i +
1

c2

(

Qjvi + Qiv
j − 4UΠj

i

)

]

|j

+
1

a

(

1 − 1

c2
2U

)

p,i −
1

a

(

σ +
1

c2
̺v2

)

U,i

+
1

c2
̺

[

4vi

(

∂

∂t
+

1

a
v · ∇

)

U +
2

a

(

U2 − Φ
)

,i
− 1

a
(aPi)

· − 2

a
vjP[i|j] +

4

̺a
U,jΠ

j
i

]

= 0, (104)

where

σ ≡ ̺

[

1 +
1

c2

(

v2 + 2U + Π +
p

̺

)]

. (105)

To the Newtonian order Eqs. (103), (104) for ̺ and vi reduce to Eqs. (99), (100), respectively. From Eq. (55), (65)
we can derive alternative forms

1

a3

(

a3̺∗
)·

+
1

a

(

̺∗vi
)

|i = − 1

c2

[

1

a

(

Qi
|i + Πi

jv
j

|i

)

+ ̺

(

∂

∂t
+

1

a
v · ∇

)

Π +

(

3
ȧ

a
+

1

a
∇ · v

)

p

]

, (106)

1

a
(av∗i )· +

1

a
v∗i|jv

j =
1

a

{

U,i +
1

c2

[(

3

2
v2 − U + Π + 3

p

̺

)

U,i + 2Φ,i − vjPj|i

]}

− 1

̺∗a

{(

1 +
1

c2
2U

) [

pδj
i + Πj

i +
1

c2

(

Qjvi − 2V Πj
i − Πikvjvk

)

]}

|j

+
1

c2

v∗i
̺∗

[

1

a

(

Qj + Πj
kvk

)

|j
+ ̺

(

∂

∂t
+

1

a
v · ∇

)

Π +

(

3
ȧ

a
+

1

a
∇ · v

)

p

]

, (107)

where

̺∗ ≡ ̺

[

1 +
1

c2

(

1

2
v2 + 3U

)]

,

v∗i ≡ vi +
1

c2

[(

1

2
v2 + 3U + Π +

p

̺

)

vi − Pi +
1

̺

(

Qi + Πijv
j
)

]

. (108)
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The hydrodynamic and thermodynamic variables Π, p, Qi and Πij should be provided by specifying the equations of
state and the thermodynamic state of the system under consideration.

The metric variables U , Φ and Pi can be expressed in terms of the Newtonian variables ̺, vi, Π, p, Qi and Πij by
using Einstein’s equations. Equations (83), (84) give

∆

a2
U = −4πG (̺ − ̺b) , (109)

which already determines U . Equations (80), (81), and (87) give

∆

a2
U + 4πG (̺ − ̺b) +

1

c2

{

1

a2

[

2∆Φ − 2U∆U +
(

aP i
|i

)·]
+ 3Ü + 9

ȧ

a
U̇ + 6

ä

a
U

+8πG

[

̺v2 +
1

2
(̺Π − ̺bΠb) +

3

2
(p − pb)

]

}

= 0, (110)

∆

a2
Pi = −16πG̺vi +

1

a

(

1

a
P j

|j + 4U̇ + 4
ȧ

a
U

)

,i

, (111)

∆

a2
U̇ = 4πG

[

1

a

(

̺vi
)

|i +
ȧ

a
(̺ − ̺b)

]

. (112)

Notice that to 1PN order Einstein’s equations do not involve the anisotropic stress or flux term. To 1PN order Eq.
(110) determines Φ. Our conservation equations (103), (104) contain U̇ terms. In order to handle these terms it
was suggested in [28] that the Poisson-type equation in Eq. (112) provides better numerical accuracy. Notice that,
whereas only the spatial gradient of the potential U appears in the Newtonian limit, we have bare U terms present
in the 1PN order [29].

In order to handle these equations we have the freedom to take one temporal gauge condition. This corresponds
to imposing a condition on P i

|i or Φ. Gauge related issues will be addressed in detail in Sec. V. There, we will show

that all our variables in this section are spatially gauge-invariant, and are temporally gauge-ready.

B. Ideal fluid case

We consider an ideal fluid, i.e., Qi ≡ 0 ≡ Πij , and assume the adiabatic condition Eq. (102) applies. Thus, the
internal energy is determined by the energy conservation equation

(

∂

∂t
+

1

a
v · ∇

)

Π +

(

3
ȧ

a
+

1

a
∇ · v

)

p

̺
= 0. (113)

To the background order we have Eqs. (95)-(98). To the Newtonian order we have Eqs. (99)-(102). Equations (103),
(104) become

1

a3

(

a3σ
)·

+
1

a

(

σvi
)

|i +
1

c2
̺

(

U̇ +
ȧ

a
v2 − ṗ

̺

)

= 0, (114)

1

a4

(

a4σvi

)·
+

1

a

(

σviv
j
)

|j −
1

a

(

σ +
1

c2
̺v2

)

U,i +
1

a

(

1 − 1

c2
2U

)

p,i

+
1

c2
̺

[

4vi

(

∂

∂t
+

1

a
v · ∇

)

U +
2

a

(

U2 − Φ
)

,i
− 1

a
(aPi)

· − 2

a
vjP[i|j]

]

= 0, (115)

where σ is given in Eq. (105). These equations can be written as

1

a3

(

a3̺
)·

+
1

a

(

̺vi
)

|i +
1

c2
̺

(

∂

∂t
+

1

a
v · ∇

) (

1

2
v2 + 3U

)

= 0, (116)

1

a
(avi)

·
+

1

a
vi|jv

j − 1

a
U,i +

1

a

p,i

̺
+

1

c2

[

− 1

a

(

v2 + 4U + Π +
p

̺

)

p,i

̺

+vi

(

∂

∂t
+

1

a
v · ∇

) (

1

2
v2 + 3U + Π +

p

̺

)

− 1

a
v2U,i +

2

a

(

U2 − Φ
)

,i
− 1

a
(aPi)

· − 2

a
vjP[i|j]

]

= 0. (117)
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Alternative forms follow from Eqs. (106), (107)

1

a3

(

a3̺∗
)·

+
1

a

(

̺∗vi
)

|i = 0, (118)

1

a
(av∗i )· +

1

a
v∗i|jv

j = −1

a

(

1 +
1

c2
2U

)

p,i

̺∗
+

1

a

[

1 +
1

c2

(

3

2
v2 − U + Π +

p

̺

)]

U,i +
1

c2

1

a

(

2Φ,i − vjPj|i
)

, (119)

where

̺∗ ≡ ̺

[

1 +
1

c2

(

1

2
v2 + 3U

)]

, v∗i ≡ vi +
1

c2

[(

1

2
v2 + 3U + Π +

p

̺

)

vi − Pi

]

. (120)

All these equivalent three sets of equations are written in Eulerian forms. Einstein’s equations in (110)-(112) will
provide the metric perturbation variables U , Φ and Pi in terms of the Newtonian fluid variables (̺, vi, Π, and p),
after taking one temporal gauge condition. The pressure term should be provided by an equation of state. In the
case of a zero-pressure fluid with vanishing internal energy we can set p = 0 = Π. We can take any set of equations
of motion depending on the mathematical convenience in numerical treatments.

V. GAUGE ISSUE

A. Gauge transformation

We consider the following transformation between two coordinates xa and x̂a

x̂a ≡ xa + ξ̃a(xe). (121)

For a tensor quantity we use the tensor transformation property between xa and x̂a coordinates

t̃ab(x
e) =

∂x̂c

∂xa

∂x̂d

∂xb

ˆ̃tcd(x̂
e). (122)

Comparing tensor quantities at the same spacetime point, xa, we can derive the gauge transformation property of a
tensor quantity, see Eq. (226) in [17],

ˆ̃tab(x
e) = t̃ab(x

e) − 2t̃c(aξ̃
c
,b) − t̃ab,cξ̃

c + 2t̃c(aξ̃
d
,b)ξ̃

c
,d + t̃cdξ̃

c
,aξ̃d

,b

+ξ̃d

(

2ξ̃c
,(at̃b)c,d + 2t̃c(aξ̃

c
,b)d +

1

2
t̃ab,cdξ̃

c + t̃ab,cξ̃
c
,d

)

. (123)

We considered ξ̃a to the second perturbational order which will turn out to be sufficient for the 1PN order. In the
following we will consider the gauge transformation properties of the metric and the energy-momentum variables.

As the metric we consider the following more generalized form

g̃00 ≡ −
[

1 − 1

c2
2U +

1

c4

(

2U2 − 4Φ
)

]

+ O−6,

g̃0i ≡ − 1

c3
aPi + O−5,

g̃ij ≡ a2

[(

1 +
1

c2
2V

)

γij +
1

c2

(

2C,i|j + 2C(i|j) + 2Cij

)

]

+ O−4, (124)

where Ci is transverse (Ci
|i ≡ 0), and Cij is transverse and tracefree (Cj

i|j ≡ 0 ≡ Ci
i ); indices of Ci and Cij are

based on γij . In Eq. (124) we introduced 10 independent metric components: U and Φ together (1-component), Pi

(3-components), V (1-component), C (1-component), Ci (2-components), and Cij (2-components). It is known that
gravitational waves show up in the 2.5PN order [8]. Thus, we ignore the transverse and tracefree part, i.e., set Cij ≡ 0
to 1PN order.

We wish to keep the metric in the form of Eq. (124) in any coordinate system. Thus, we take the transformation

variable ξ̃a to be a PN-order quantity. We consider coordinate transformations which satisfy
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ξ̃0 ≡ 1

c
ξ(2)0 +

1

c3
ξ(4)0 + . . . , ξ̃i ≡ 1

c2

1

a
ξ(2)i + . . . , (125)

where the indices of the ξ(2)i’s are based on γij .
The gauge transformation of Eq. (123) applied to the metric gives

Û = U + ξ̇(2)0, (126)

Φ̂ = Φ +
1

2
ξ̇(4)0 − 1

2
U̇ξ(2)0 − 1

2a
U,iξ

(2)i − 1

2
ξ(2)0ξ̈(2)0 − 1

4
ξ̇(2)0ξ̇(2)0 − 1

2

(

1

a
ξ(2)iξ

(2)0
,i

)·
, (127)

ξ
(2)0

,i = 0, (128)

P̂i = Pi −
1

a
ξ
(4)0

,i + a

(

1

a
ξ
(2)
i

)·
+

2

a

(

U + ξ̇(2)0
)

ξ
(2)0

,i +
1

a
ξ̇
(2)0

,iξ
(2)0 +

1

a2

(

ξ(2)jξ
(2)0

,j

)

,i
, (129)

(∆ + 3K)∆Ĉ = (∆ + 3K)

(

∆C − 1

a
ξ
(2)i

|i

)

+
∆

4a2

(

ξ(2)0,iξ
(2)0

,i

)

− 3

4a2

(

ξ
(2)0

,iξ
(2)0

,j

)|ij
, (130)

(∆ + 2K) Ĉi = (∆ + 2K)

(

Ci −
1

a
ξ
(2)
i

)

− 1

3a
ξ
(2)j

|ji
− 1

a2

(

ξ
(2)0

,iξ
(2)0

,j

)|j

+
1

a
∇i∆

−1

{

4

3
(∆ + 3K) ξ

(2)j
|j +

1

a

[

(

ξ
(2)0

,kξ
(2)0

,j

)|kj
]}

, (131)

(∆ + 3K) V̂ = (∆ + 3K)

(

V − ȧ

a
ξ(2)0

)

− ∆ + 2K

4a2

(

ξ(2)0,iξ
(2)0

,i

)

+
1

4a2

(

ξ
(2)0

,iξ
(2)0

,j

)|ij
. (132)

Equations (126), (127) follow from the transformation of g̃00; Eqs. (128), (129) follow from g̃0i; Eqs. (130)-(132) follow
from g̃ij .

Equation (128) shows that ξ(2)0 is spatially constant,

ξ(2)0 = ξ(2)0(t). (133)

After this, Eq. (130) gives

∆Ĉ = ∆C − 1

a
ξ
(2)i

|i. (134)

Thus, by choosing C ≡ 0 (∆C ≡ 0 is enough) as the gauge condition (this implies that we set C = 0 to be valid in
any coordinate), we have

ξ
(2)i

|i = 0. (135)

Imposing the conditions in Eqs. (133), (135), Eq. (131) gives

Ĉi = Ci −
1

a
ξ
(2)
i . (136)

Thus, by choosing Ci ≡ 0 to be valid in any coordinate, i.e., choosing Ci ≡ 0 as the gauge condition, we have

ξ
(2)
i = 0. (137)

Under the conditions in Eqs. (133), (137) the remaining metric perturbation variables transform as

Û = U + ξ̇(2)0, V̂ = V − ȧ

a
ξ(2)0, Φ̂ = Φ +

1

2
ξ̇(4)0 − 1

2
U̇ξ(2)0 − 1

2
ξ(2)0ξ̈(2)0 − 1

4
ξ̇(2)0ξ̇(2)0,

P̂i = Pi −
1

a
ξ
(4)0

,i. (138)

Notice that for non-vanishing ξ(2)0, U and V transform differently under the gauge transformation even in the flat
cosmological background. Since the spatially constant ξ(2)0 can be absorbed by a global redefinition of the time
coordinate, without losing generality we can set ξ(2)0 equal to zero
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ξ(2)0 ≡ 0, (139)

thus allowing V = U in any coordinate. If we set ξ(2)0 = 0 but do not take the spatial gauge which fixes ξ
(2)
i , from

Eqs. (126)-(132), the metric variables transform as

Û = U, (140)

Φ̂ = Φ +
1

2
ξ̇(4)0 − 1

2a
U,iξ

(2)i, (141)

P̂i = Pi −
1

a
ξ
(4)0

,i + a

(

1

a
ξ
(2)
i

)·
, (142)

∆Ĉ = ∆C − 1

a
ξ
(2)i

|i, (143)

(∆ + 2K) Ĉi = (∆ + 2K)

(

Ci −
1

a
ξ
(2)
i

)

− 1

3a
ξ
(2)j

|ji
+

4

3a
∇i∆

−1 (∆ + 3K) ξ
(2)j

|j , (144)

V̂ = V. (145)

Taking the spatial gauge conditions C = 0 = Ci we have ξ
(2)
i = 0 = ξ(2)0, and the remaining metric perturbation

variables transform as

Û = U, V̂ = V, Φ̂ = Φ +
1

2
ξ̇(4)0, P̂i = Pi −

1

a
ξ
(4)0

,i. (146)

In the perturbation analysis we call C ≡ 0 ≡ Ci the spatial C-gauge [17]. Apparently, under these gauge conditions

the spatial gauge transformation function to 1PN order, ξ
(2)
i , is fixed completely, i.e., ξ

(2)
i = 0. By taking such

gauge conditions, the only remaining gauge transformation function to 1PN order is ξ(4)0. This temporal gauge
transformation function affects only Φ and Pi. If we take Φ ≡ 0 as the temporal gauge condition, we have ξ̇(4)0 = 0,
thus ξ(4)0 does not vanish even after imposing the temporal gauge condition and has general dependence on spatial
coordinate ξ(4)0(x). Thus, in this gauge, even after imposing the temporal gauge condition the temporal gauge mode
is not fixed completely. Whereas, if we take P i

|i ≡ 0 as the temporal gauge condition, we have ξ(4)0 = 0, thus the

temporal gauge condition is fixed completely. In fact, from the gauge transformation properties of Φ and Pi we can
make the following combinations

Φ,i +
1

2
(aPi)

·
, ∆Φ +

1

2

(

aP i
|i

)·
, (147)

which are invariant under the temporal gauge transformation, i.e., temporally gauge-invariant. Meanwhile, U and V
are already temporally gauge-invariant. Since our spatial C-gauge also has removed the spatial gauge transformation
function completely, we can correspond each remaining variable to a unique (spatially and temporally) gauge-invariant
combination. Thus, in this sense, we can equivalently regard all our remaining variables as gauge-invariant ones. For
example, for K = 0, from Eqs. (140)-(145) we can show

P̂i + a
(

Ĉi + Ĉ,i

)·
= Pi + a (Ci + C,i)

· − 1

a
ξ
(4)0

,i. (148)

Thus, Pi + a (Ci + C,i)
·

is spatially gauge-invariant and becomes Pi under the spatial C-gauge. This implies that
Pi under the spatial C-gauge is equivalent to a unique gauge-invariant combination Pi + a (Ci + C,i)

·
. Similarly,

in the case of the temporal gauge, from Eq. (147) we can show that ∆Φ under the P i
|i = 0 gauge is the same as

a unique gauge-invariant combination ∆Φ + 1
2 (aP i

|i)
·. In this sense, under gauge conditions which fix the gauge

mode completely, the remaining variables can be regarded as equivalently gauge-invariant ones with corresponding
gauge-invariant variables.

In Eq. (1) we began our 1PN analysis by choosing the spatial C-gauge

C ≡ 0 ≡ Ci. (149)

By examining Eqs. (140)-(145) we notice that the spatial C-gauge is most economic in fixing the spatial gauge mode
completely without due alternative. In this sense the spatial C-gauge can be regarded as a unique choice and we do
not lose any mathematical convenience by taking this spatial gauge condition. In the literature these conditions are
often expressed in the following forms. The spatial component of the harmonic gauge condition sets the 1PN part of
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g̃abΓ̃i
ab = − 1√

−g̃

(

√

−g̃g̃ic
)

,c
=

1

c2

∆

a2

(

C,i + Ci
)

+ L−1O−4, (150)

equal to zero. We can also set the 1PN part of

g̃jk

(

g̃ij,k − 1

3
g̃jk,i

)

=
1

c2
∆

(

4

3
C,i + Ci

)

+ L−1O−4, (151)

equal to zero; notice that in Eqs. (150), (151) we assumed K = 0. In either case we arrive at Eq. (149). We have
shown that under the conditions in Eq. (149), the spatial gauge transformation is fixed completely without losing any
generality or convenience. Whereas, we have not chosen the temporal gauge condition which can be best achieved by
imposing a condition on P i

|i. We call this the gauge-ready strategy [18,17]. It is convenient to choose this remaining

temporal gauge condition depending on the problem we encounter; or to try many different ones in order to find out
the best suitable one or ones.

Now, let us consider the gauge transformation property of the energy-momentum tensor. We set ξ(2)0 ≡ 0. The
gauge transformation property of Eq. (123) applied to the energy-momentum tensor in Eq. (20) gives

ˆ̺ = ̺ +
1

c2
̺(2), (152)

Π̂ = Π − 1

a

̺,i

̺
ξ(2)i − ̺(2)

̺
, (153)

v̂i = vi +
1

c2
v
(2)
i , (154)

Q̂i = Qi − ̺

[

v
(2)
i − a

(

1

a
ξ
(2)
i

)·
+

1

a
vjξ

(2)j
|i +

1

a
vi|jξ

(2)j

]

, (155)

p̂ = p − 1

c2

1

a

(

p,iξ
(2)i +

2

3
pξ

(2)i
|i +

2

3
Πi

jξ
(2)j

|i

)

, (156)

Π̂ij = Πij −
1

c2

1

a

[

2p

(

ξ
(2)
(i|j) −

1

3
γijξ

(2)k
|k

)

+ Πij|kξ(2)k + 2Πk(iξ
(2)k

|j) −
2

3
γijΠ

k
l ξ

(2)l
|k

]

. (157)

Equations (152), (153) follow from the transformation property of T̃00; Eqs. (154), (155) follow from T̃0i; Eqs. (156),

(157) follow from T̃ij . The transformation functions ̺(2) and v
(2)
i are not determined, see below.

If we take the spatial C-gauge, i.e., set ξ
(2)
i ≡ 0, we have

ˆ̺ = ̺ +
1

c2
̺(2), Π̂ = Π − ̺(2)

̺
, v̂i = vi +

1

c2
v
(2)
i , Q̂i = Qi − ̺v

(2)
i , p̂ = p + O−4, Π̂ij = Πij + O−4. (158)

Thus, we have

ˆ̺

(

1 +
1

c2
Π̂

)

= ̺

(

1 +
1

c2
Π

)

, v̂i +
1

c2

1

̺
Q̂i = vi +

1

c2

1

̺
Qi. (159)

Although the gauge transformation properties of ̺ and Π are not determined individually, the energy density
µ ≡ ̺

(

1 + Π/c2
)

is gauge-invariant under our C-gauge. For vanishing Π we have ̺(2) = 0. Similarly, the gauge
transformation properties of vi and Qi are not determined individually. For vanishing flux term in any coordinate,

Qi = 0, we have v
(2)
i = 0, thus v̂i = vi + O−4. Thus, the gauge transformation property of vi is determined only for

vanishing flux term. From Eq. (108) we have

ˆ̺∗ = ̺∗ +
1

c2
̺(2), v̂∗i = v∗i +

1

c2

(

1

a
ξ
(4)0

,i −
̺(2)

̺
vi

)

. (160)

We can check that up to the 1PN order Einstein’s equations and the energy and momentum conservation equations
in Sec. IV are invariant under the gauge transformation. In the following we introduce several temporal gauge
conditions each of which fixes the temporal gauge mode completely. In relativistic gravity, gauge conditions consist of
four non-tensorial relations imposed on the metric tensor or the energy-momentum tensor. Our purpose is to employ
the temporal gauge (slicing) condition to make the resulting equations simple for mathematical/numerical treatment.
Depending on the situation we can also take alternative spatial gauge conditions for that purpose. In the following
we impose the spatial C-gauge in Eq. (149), and set K = 0.
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B. Chandrasekhar’s gauge

Chandrasekhar’s temporal gauge condition in his Eq. (24) of [5] corresponds to setting the 1PN part of

g̃ij

(

g̃0i,j −
1

2
g̃ij,0

)

= −1

c
3
ȧ

a
− 1

c3

(

1

a
P i

|i + 3U̇

)

+ L−1O−5, (161)

equal to zero; in the literature this is often called the standard PN gauge [22]. We take

1

a
P i

|i + 3U̇ + m
ȧ

a
U = 0, (162)

as Chandrasekhar’s gauge. We used the freedom to add an arbitrary m(ȧ/a)U term with m, a real number. In this
case Eqs. (110), (111) give

∆

a2
Pi = −16πG̺vi +

1

a

[

U̇ − (m − 4)
ȧ

a
U

]

,i

, (163)

∆

a2
U + 4πG (̺ − ̺b) +

1

c2

{

2
∆

a2
Φ − (m − 3)

ȧ

a
U̇ +

[

(6 − m)
ä

a
− m

ȧ2

a2

]

U

+8πG

[

̺v2 +
1

2
(̺Π − ̺bΠb) + U (̺ − ̺b) +

3

2
(p − pb)

]

}

= 0. (164)

Therefore, U , Pi, and Φ are determined by Eqs. (109), (163), and (164). The variable U̇ can be determined from Eq.
(112). This completes our 1PN scheme based on Chandrasekhar’s gauge. When we handle this complete set of 1PN
equations numerically, we should monitor whether the chosen gauge condition is satisfied always; this could be used
to control the numerical accuracy.

C. Uniform-expansion gauge

The expansion scalar of the normal-frame vector, θ̃ ≡ ñc
;c, is given in Eq. (36). It is the same as the trace of

extrinsic curvature K̄ with a minus sign, see Eq. (50). Taking the 1PN part of K̄ equal to zero

1

a
P i

|i + 3U̇ + 3
ȧ

a
U ≡ 0, (165)

can be naturally called the uniform-expansion gauge. In the literature it is often called the ADM gauge [22], or the
maximal slicing condition in numerical relativity [30]. This condition corresponds to the m = 3 case of Chandrasekhar’s
gauge in Eq. (162).

D. Transverse-shear gauge

The shear of the normal-frame vector is given in Eq. (37). Thus, the gauge condition

P i
|i ≡ 0, (166)

can be called the transverse-shear gauge. In this case Eqs. (110), (111) give

∆

a2
Pi = −16πG̺vi +

4

a

(

U̇ +
ȧ

a
U

)

,i

, (167)

∆

a2
U + 4πG (̺ − ̺b) +

1

c2

{

2
∆

a2
Φ + 3Ü + 9

ȧ

a
U̇ + 6

ä

a
U

+8πG

[

̺v2 +
1

2
(̺Π − ̺bΠb) + U (̺ − ̺b) +

3

2
(p − pb)

]

}

= 0. (168)

Therefore, U , Pi, and Φ are determined by Eqs. (109), (167), and (168). U̇ can be determined from Eq. (112). We

still have Ü which can be determined similarly by taking the time derivative of Eq. (112) and by using the background
and the Newtonian equations in Eqs. (95)-(101).
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E. Harmonic gauge

We have

g̃abΓ̃0
ab = − 1√

−g̃

(

√

−g̃g̃0a
)

,a
=

1

c
3
ȧ

a
+

1

c3

(

1

a
P i

|i + 4U̇ + 6
ȧ

a
U

)

+ L−1O−5. (169)

The well known harmonic gauge condition sets the 1PN part of Eq. (169) equal to zero, thus we take

1

a
P i

|i + 4U̇ + m
ȧ

a
U ≡ 0, (170)

where we used a freedom to add an arbitrary m(ȧ/a)U term. Combined with Eq. (150) the full harmonic gauge

condition can be expressed by setting the 1PN parts of g̃abΓ̃c
ab equal to zero. In the perturbation approach the

harmonic gauge (often called de Donder gauge) is known to be a bad choice because the condition involves derivatives
of the metric variables; this leads to an incomplete gauge fixing and consequently we would have to handle higher
order differential equations which is unnecessary, see the Appendix in [31]. In this gauge Eqs. (110), (111) give

∆

a2
Pi = −16πG̺vi − (m − 4)

ȧ

a

1

a
U,i, (171)

∆

a2
U + 4πG (̺ − ̺b) +

1

c2

{

2
∆

a2
Φ − Ü − (m − 1)

ȧ

a
U̇ +

[

(6 − m)
ä

a
− m

ȧ2

a2

]

U

+8πG

[

̺v2 +
1

2
(̺Π − ̺bΠb) + U (̺ − ̺b) +

3

2
(p − pb)

]

}

= 0. (172)

Therefore, U , Pi, and Φ are determined by Eqs. (109), (171), and (172). The variable U̇ can be determined from Eq.

(112). We also have a Ü term in Eq. (172) which might demand for a more involved numerical implementation as
explained below Eq. (168). However, its presence makes the propagating nature of the 1PN order metric fluctuations
apparent in this gauge condition. This time-delayed propagation of the gravitational field in the 1PN approximation
can be compared with the action-at-a-distance nature of Poisson’s equation in the Newtonian order in Eq. (172).
We anticipate that the relativistic time-delayed propagation could lead to a secular (time cumulative) effect. This
could be important even in the case in which the 1PN correction terms are small compared with the Newtonian
terms; in the large-scale clustering regions we would expect (v/c)2 ∼ GM/(Rc2) ≃ 10−6 ∼ 10−4, see Sec. VI. Using
g̃00 ≡ −1 + 2U/c2 we have

U ≡ U +
1

c2

(

−U2 + 2Φ
)

+ c2O−4, (173)

thus

2U ≡ U;c
c =

∆

a2
U − 1

c2

(

Ü + 3
ȧ

a
U̇ + 2U

∆

a2
U

)

+ T −2O−4

=
∆

a2
U − 1

c2

[

∆

a2

(

U2 − 2Φ
)

+ Ü + 3
ȧ

a
U̇ + 2U

∆

a2
U

]

+ T −2O−4, (174)

and Eq. (172) can be written as

2U + 4πG (̺ − ̺b)

+
1

c2

{

∆

a2
U2 − (m − 4)

ȧ

a
U̇ +

[

(6 − m)
ä

a
− m

ȧ2

a2

]

U + 8πG

[

̺v2 +
1

2
(̺Π − ̺bΠb) +

3

2
(p − pb)

]}

= 0. (175)

Thus, in the harmonic gauge condition the propagation speed of the gravitational potential U is the same as the
speed of light c. (When we mention the propagation speed, we are considering the D’Alembertian part of the wave

equation ignoring the nonlinear terms and background expansion. In this case we have 2U = a−2∆U − c−2Ü, and
for K = 0, ∆ becomes the ordinary Laplacian in flat space.) Apparently, the wave speed of the metric (potential) can
take an arbitrary value depending on the temporal gauge condition we choose. For example, if we take

1

a
P i

|i + nU̇ + m
ȧ

a
U ≡ 0, (176)
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as the gauge condition, with n and m real numbers, Eqs. (110), (111) give

∆

a2
Pi = −16πG̺vi −

1

a

[

(n − 4) U̇ + (m − 4)
ȧ

a
U

]

,i

, (177)

∆

a2
U + 4πG (̺ − ̺b) +

1

c2

{

2
∆

a2
Φ − (n − 3) Ü − (2n + m − 9)

ȧ

a
U̇ +

[

(6 − m)
ä

a
− m

ȧ2

a2

]

U

+8πG

[

̺v2 +
1

2
(̺Π − ̺bΠb) + U (̺ − ̺b) +

3

2
(p − pb)

]

}

= 0. (178)

In this case, for n ≥ 3, the speed of propagation corresponds to

c√
n − 3

, (179)

which can take an arbitrary value depending on our choice of the value of n. It becomes c for n = 4 (e.g., the harmonic
gauge), and infinity for n = 3 (e.g., Chandrasekhar’s gauge and the uniform-expansion gauge). In the case of the
transverse-shear gauge we have n = 0, thus Eq. (168) is no longer a wave equation.

F. Transformation between two gauges

Now, let us show how we can relate the equations and solutions known in one gauge condition to the ones in any

other gauge condition. Our spatial C-gauge condition already fixed the gauge transformation function ξ
(2)
i ≡ 0, and

we have ξ(2)0 ≡ 0. Under the remaining (temporal) gauge transformation

t̂ = t +
1

c4
ξ(4)0, x̂i = xi, (180)

we have

Φ̂ = Φ +
1

2
ξ̇(4)0, P̂i = Pi −

1

a
ξ
(4)0

,i, (181)

and all the other variables are gauge-invariant. As an example, let us consider the two gauge conditions used in Sec.
VD and Sec. VE. Let us assume that the xa coordinate is the transverse-shear gauge in Sec. VD, and x̂a is the
harmonic gauge in Sec. VE. Thus, we have P i

|i ≡ 0 in xa, and 4U̇ + m ȧ
a
U + a−1P i

|i ≡ 0 in x̂a. From Eq. (181) we

have

−
(

4U̇ + m
ȧ

a
U

)

= 0 − ∆

a2
ξ(4)0, (182)

thus

∆

a2
ξ(4)0 = 4U̇ + m

ȧ

a
U. (183)

Thus, when we transform the result known in the transverse-shear gauge to the harmonic gauge, we use Eq. (181)
with ξ(4)0 given in Eq. (183). All the other variables are invariant under the gauge transformation. We can show that
under this transformation Eqs. (167), (168) become Eqs. (171), (172), respectively. In this way, if we know the solution
in any gauge condition the rest of the solutions in other gauge conditions can be simply derived without solving the
equations again. Thus, as in other gauge theories (like Maxwell’s or Yang-Mills’ theories) the gauge condition should
be deployed to our advantage in handling the problem mathematically.

VI. DISCUSSION

Here we compare the PN approach with the perturbative one. The perturbation analysis is based on the perturbation
expansion of the metric and energy-momentum variables in a given background. All perturbation variables are assumed
to be small. In linear order perturbations we keep only the first-order deviations from the background [1–3], whereas
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in the weakly nonlinear perturbations we keep higher-order deviations to the desired order [17]. Contrary to the PN
approach the perturbation analysis is applicable in the strong gravity regime and on all cosmological scales as long
as the perturbations are linear or weakly nonlinear.

Meanwhile, in the PN approach, by assuming weak gravitational fields and slow motions, we try to provide the
general relativistic correction terms for the Newtonian equations of motion. Thus, in the PN approach, in fact,
we abandon the geometric spirit of general relativity and recover the concept of absolute space and absolute time.
Although this could be regarded as a shortcoming of the PN approach, in this way it provides the relativistic effects
in forms of the correction terms to the well known Newtonian equations, thus enabling us to use simpler conventional
(numerical) treatment. We expand the metric and the energy-momentum variables in powers of v/c in a given
background spacetime. In nearly virialized system we have GM/(Rc2) ∼ (v/c)2 which is assumed to be small.

Thus, no strong gravity situation is allowed and the results are valid inside horizon
√

GM/(Rc2) ∼ R/(c/H) < 1. In
comparison to the perturbation approach, however, the resulting equations in the 1PN approximation can be regarded
as fully nonlinear. As in the perturbative case, even in our cosmological PN approach we assume the presence of a
Robertson-Walker cosmological background.

As we have summarized in the introduction, our studies of the weakly nonlinear regime of a zero-pressure cos-
mological medium showed that the Newtonian equations are quite successful even near the horizon scale where the
fluctuations are supposed to be near linear stage. We have shown that to the second order in perturbations, except
for the presence of gravitational waves, the relativistic equations coincide exactly with the Newtonian ones. The pure
relativistic correction terms appearing in the third order are independent of the presence of the horizon and are small
compared with the second-order terms by a factor δT/T ∼ 10−5, thus negligible.

In order to properly estimate the relativistic effects in the evolution of large-scale cosmic structures we have to
implement our equations in a hydrodynamic cosmological numerical simulation. The PN correction terms are (v/c)2

or GM/(Rc2) orders smaller than the Newtonian terms. In Newtonian numerical simulations the maximum large
scale velocity field of a cluster flow reaches nearly 3000km/sec and the typical value for the velocity is about an order
of magnitude smaller than this [32]. Thus, we may estimate the 1PN effect to be of the order (v/c)2 ≃ 10−6 ∼ 10−4,
thus quite small. We already mentioned that the PN approximation is applicable inside the horizon only. Considering
the action-at-a-distance nature of the Newtonian gravity theory it is important to check the domain of validity of
the Newtonian theory in the nonlinear evolution of cosmological structures. The PN approach provides a way to find
out the relativistic effects in such a regime. We anticipate that the propagating nature of the gravitational field with
finite speed in relativistic gravity theory, compared with the instantaneous propagation in Newton’s theory, could
lead to accumulative (or secular) relativistic effects. In order to estimate relativistic effects it would be appropriate
to consider a single cold dark matter component as a zero-pressure fluid without internal energy. In such a case our
equations in Sec. IVB with p = 0 = Π and the metric variables U , Φ, and Pi presented in various gauge conditions
in Sec. VB-VE would provide a complete set of equations expressed in various forms.

Large-scale structures are still near the linear regime, and due to the enhanced amplitude of the initial mass power
spectrum in the small scale the gravitational evolution causes nonlinear regions to begin in the small scale and to
propagate to larger scales [33]. The current belief is that in small scale structures, where the nonlinearity is important,
the dynamical time-scale is much longer than the light travel time over this scale, thus the time dilation effect from
relativistic gravity is not important. The 1PN order relativistic effects could be important in the tidal interactions
among clusters of galaxies, where the dynamical time-scale could become substantial compared with the light crossing
time of the scales involved [29].

We can perform numerical simulations based on any two different gauge conditions. The results should coincide
after making a gauge transformation between the two gauges as in Sec. VF. Also, the two simulations should give
identical result for any given gauge-invariant variable. These might provide a way to check the numerical accuracy of
the simulations. Analyses based on different gauge conditions would lead to the different results; this is in the sense
that a given variable evaluated in two different gauges are actually two different variables, unless the original variable
is gauge-invariant. Even for the temporal gauge condition (after fixing the spatial C-gauge) there are infinitely
many different gauge conditions available. Since each of the gauge conditions displayed in Sec. VB-VE fixes the
temporal gauge mode completely (and the spatial gauge modes are already completely fixed by our spatial C-gauge),
all remaining variables are equivalently gauge-invariant. Thus, apparently, the gauge-invariance does not guarantee us
to associate the variables with physically measurable quantities. The identification of physically measurable quantities
out of infinitely many gauge-invariant candidates is still an open issue which remains to be addressed. The gauge
invariance assures that the value should not depend on the gauge we take and this fact can be used to check and
control the numerical accuracy of the simulations.

In a related context, we have shown that the propagation speed of the gravitational potential depends on the
temporal gauge condition we take, see Eq. (179). A similar situation occurs in classical electrodynamics. The
propagation speeds of the electromagnetic scalar and vector potentials are the speed of light c in the Lorenz gauge,
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whereas that of scalar potential becomes infinite in the Coulomb gauge. In electromagnetism the issue is well resolved
by showing that the electric and magnetic fields propagate with c independently of the adopted gauge condition [34].
In our 1PN approach, however, we have not been able to resolve the case. In the PN case this is related to identifying
the physically relevant gauge condition out of infinitely many different gauge conditions available (which are all gauge-
invariant), an issue we have described in the previous paragraph. One difference compared to electromagnetism is that
the PN approach addresses fully nonlinear gravitational dynamics whereas electromagnetics concerns linear processes.
We wish to address these important issues in a future occasion.

Just like the solar system tests of Einstein’s gravity theory, the nonlinear evolution of the large-scale cosmic structure
could provide another regime where the gravitational field is weak and the motions are slow so that the post-Newtonian
approximation would be practically adequate to describe the ever-present relativistic effects using Newtonian-like
equations. The problem is whether such effects are significant enough to be detected in future observations and
numerical experiments. This important issue is left for future studies. We hope that our set of 1PN order equations
and our strategy for using those equations would be useful for such studies in the cosmological context. In more
realistic cosmological situations we have dust and cold dark matter which can be approximated by two zero-pressure
ideal fluids. We can also include pressure and dissipation effects in the case of dust. The multi-component situation
of cosmological 1PN hydrodynamics will be considered in later extensions of this work. Extending our formulation to
higher order PN approximation is also an apparent next step which would be tedious but straightforward.
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