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CENTRA, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal

jan.steinhoff@ist.utl.pt

DIRK PUETZFELD

ZARM, University of Bremen, Am Fallturm, 28359 Bremen, Germany

dirk.puetzfeld@zarm.uni-bremen.de

We present some recent results on the motion of test bodies with internal structure in

General Relativity. On the basis of a multipolar approximation scheme, we study the

motion of extended test bodies endowed with an explicit model for the quadrupole.

The model is inspired by effective actions recently proposed in the context of the post-

Newtonian approximation, including spin-squared and tidal contributions. In the equato-

rial plane of the Kerr geometry, the motion can be characterized by an effective potential

of the binding energy. We compare our findings to recent results for the conservative part

of the self-force in astrophysically realistic situations.
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One interesting prospect of upcoming gravitational wave astronomy is the ability

to probe the internal structure of compact astrophysical objects. Such objects can be

modeled by different methods in the context of General Relativity. Here we employ

a multipolar approximation scheme,2,3 in which the equations of motion for test

bodies with internal structure take the following form up to the quadrupolar order:

δpa

ds
=

1

2
Rabcdu

bScd +
1

6
∇aRbcdeJ

bcde, (1)

δSab

ds
= 2p[aub] −

4

3
R[a

cdeJ
b]cde, (2)

where s is the proper time, ua is the 4-velocity, pa the 4-momentum, Sab = −Sba

the 4-spin, and Jabcd is the quadrupole moment with Jabcd = J [ab][cd] = Jcdab and

J [abc]d = 0. The spin contributions were already discovered by Matthisson4 and later

on by Papapetrou.5 Note that there is no dynamic equation for the quadrupole (or

higher multipoles). Such a quadrupole model – as well as a supplementary condition

for the spin – must be added by hand in order to close the system of equations, and

thus allow for a unique prediction of the motion. See also Ref. 3 for a discussion of

different supplementary conditions and conserved quantities at different multipolar

orders.

Following Ref. 1, we adopt a quadrupole model for astrophysically realistic sce-

narios, which was recently developed within a post-Newtonian context, i.e.

Jabcd = −
m

m

[

1

m
p[aQb]cd +

1

m
p[dQc]ba +

3

m2
p[aQb][cpd]

]

, (3)

Qab = cES2Sa
eS

be − µ2E
ab, Qbcd = −

2σ2

m
ηdceap

eBba, (4)
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where Qab is the mass quadrupole and Qbcd the flow quadrupole.6 The mass-like

quantities are defined by m2 := papa and m := pau
a. The quantities cES2 , µ2, and

σ2 are assumed to be constants, and parameterize quadrupole deformations induced

by the spin and by tidal forces of the spacetime. Furthermore, Eab = 1
m2Racbdp

cpd

represents the gravito-electric tidal field, and Bab = 1
2m2 ηaecdRbf

cdpepf the gravito-

magnetic (frame-dragging) tidal field, where Rabcd is the Riemann tensor and ηabcd
the volume form. The quadrupole model in (3) can be derived from effective ac-

tions.7–9

Given this quadrupole model, the motion of a mass-spin-quadrupole test body

in the equatorial plane of the Kerr geometry is studied. We further assume that the

spin of the test body is aligned with the rotation axis of the background spacetime.

In the absence of a quadrupole, this problem can be solved in a simple manner,10

and we have shown that this method is in fact still applicable for the considered

quadrupole model.1 The method makes use of the fact that the conserved quantities,

the spin supplementary condition, and the constraints on the orbital configuration

are enough to uniquely fix the 10 dynamic variables contained in pa and Sab.

The spin supplementary condition (Sabpb = 0) contains three independent equa-

tions, while the constraint on the orbit provides three further independent con-

ditions, one due to equatorial orbits (pθ = 0) and two due to spin alignment

(Saθ = 0). So we need to identify 10 − 3 − 3 = 4 conserved quantities in order

to solve for pa and Sab algebraically. The Killing vectors of Kerr spacetime ∂t and

∂θ give rise to conserved energy E := E∂t
, and total angular momentum J := E

−∂θ
,

where6 Eξ := paξ
a+ 1

2S
ab∇aξb. Furthermore, it can be shown1 that the spin-length

S :=
√

1
2SabSab is conserved for the considered quadrupole model. The identifica-

tion of a conserved mass-like quantity is most problematic, as it crucially depends

on the adopted quadrupole model. We were only able to identify a mass-like quan-

tity that is conserved in an approximate sense. If we utilize a multipole counting

scheme of the form

µ = O (ǫ0) = pa,
δpa

ds
= O (ǫ1) = Sab,

δSab

ds
= O (ǫ2) = Jabcd, (5)

then the mass-like quantity µ,

µ := m+
cES2

2
EabS

a
cS

cb +
µ2

4
EabE

ab +
2σ2

3
BabB

ab, (6)

is conserved up to the order O (ǫ3). This formula for µ can in fact be easily derived

from the underlying effective action.

Now we are in a position to solve for pa and Sab. Most important is the equation

for pr. It turns out, that (pr)2 is equal to a polynomial of second order in E. With

the roots of this polynomial denoted by U+ and U
−
, one can write

(pr)
2
∝ (E − U+)(E − U

−
). (7)

For pr to be a real number we need to have both E ≤ U+ and E ≤ U
−
, or both

E ≥ U+ and E ≥ U
−
. It turns out that the important relation is just E ≥ U+
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Fig. 1 Various correc-

tions to the binding en-

ergy e for a maximally

spinning (small) black

hole in a Schwarzschild

background. lc is the

orbital angular mo-

mentum. Curves must

be scaled to the actual

mass ratio, see text.

for the most relevant part of the parameter space. This justifies to call U+ effective

potential. The test body can only move in the region where E ≥ U+ and the turning

points are given by E = U+, because then pr = 0 – which implies ur = 0. Therefore

the minimum of U+ defines circular orbits.

We compared the binding energy E for circular orbits with recent results for the

conservative part of the self-force11 and with various post-Newtonian Hamiltonians.1

The former is illustrated for the astrophysically realistic case of a very rapidly

rotating (small) black hole in a Schwarzschild background in Fig. 1. The mass ratio is

formally q = 1, so the curves must be scaled to a realistic case (q . 10−2). Self-force

and linear spin effects scale as ∝ q, the others as ∝ q2. In a Kerr background the last

stable circular orbit can be very close to the horizon, such that the discussed effects

can be some orders of magnitude stronger. A more complete discussion including

the tidal quadrupole contributions proportional to µ2 and σ2 can be found in Ref. 1.
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