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Equivalence principle in scalar-tensor gravity
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We present a direct confirmation of the validity of the equivalence principle for unstructured test
bodies in scalar tensor gravity. Our analysis is complementary to previous approaches and valid
for a large class of scalar-tensor theories of gravitation. A covariant approach is used to derive
the equations of motion in a systematic way and allows for the experimental test of scalar-tensor
theories by means of extended test bodies.
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I. INTRODUCTION

Since the famous tower observations by Galileo, the in-
dependence of the dynamics on the mass of a test body in
a gravitational field has been verified in numerous phys-
ical experiments [1, 2]. This striking property of test
matter, later on termed “equivalence principle”, was put
by Einstein at the foundation of General Relativity the-
ory, further generalizations also encompass classical and
quantum extensions of General Relativity [3–8]. Tests
of the equivalence principle are therefore of fundamental
importance for relativistic gravitational theories.
Scalar-tensor theories are considered to be close and

viable generalizations of Einstein’s general relativity the-
ory. Since their early introduction in [9–11] they at-
tracted a lot of attention in the literature, in particu-
lar after the works of Brans and Dicke [12–16] in which
the scalar field was interpreted as a variable gravitational
coupling – for an overview of the history and results of
scalar-tensor theories see [17–20].
Despite the long history of scalar-tensor theories, sur-

prisingly little attention was paid to the investigation of
motion of extended test bodies in such theories. After
some preliminary discussions [14, 21, 22], the dynamics
of compact bodies was thoroughly studied in [23] in the
framework of the post-Newtonian formalism.
Here we present a multipolar derivation of the dynam-

ics of extended test bodies. In particular, we demonstrate
the validity of the equivalence principle for unstructured
test bodies for a very large class of scalar-tensor theories.
We use the notion of “test bodies” along the lines of In-
feld and Plebanski [24], who distinguished three kinds
of equations of motion. According to them, the equa-
tions of the first kind describe the motion of a test body
(particle) under the action of a given external field which
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does not depend on the dynamics of the test body. The
equations of the second and of the third kinds take into
account the back reaction, so that a body moves in a field
that depends on the mass and the motion of an extended
body. Here we deal with the equations of motion of the
first kind.
We study the class of scalar-tensor gravity models

which is fairly general. In the Brans-Dicke-(Jordan-
Thiry) theory the gravitational and scalar fields are uni-
versally coupled to matter of all types. However, in [25]
this postulate was relaxed, and while preserving the uni-
versality of the gravitational coupling, it was assumed
that scalar fields may couple differently to visible (ordi-
nary) and to invisible (dark) matter. Later this idea was
developed into a scalar chameleon theory [26, 27].
Our analysis is complementary to the ones in [28, 29]

and [30, 31]. It clearly demonstrates, that future exper-
iments to test scalar-tensor gravity should either make
use of structured test bodies or heavy bodies.

II. CONSERVATION OF ENERGY AND

MOMENTUM IN SCALAR-TENSOR THEORY

The conservation law of the energy-momentum tensor
underlies the analysis of the equations of motion of the
first kind. We suppose that the dynamics of matter that
constitutes a test body is described by the matter La-
grangian Lmat. The latter depends on the material fields
(and their derivatives) which interact with the spacetime
metric gij and with a multiplet of scalar fields ϕA (cap-
ital indices A,B,C = 1, . . . , N label the components of
the multiplet).
The metrical energy-momentum tensor of matter is

constructed as usual via
√−gtij := 2∂(

√−gLmat)/∂g
ij.

From the Noether theorem for diffeomorphism invariant
models one finds the generalized conservation law

∇jt
kj =

(

α tkj − β gkjgmnt
mn

) 1

F
∂jF = −Vij

ktij . (1)
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Here, quite generally, F = F (ϕA) and we introduced

Vij
k = −αAjδ

k
i + β gijA

k, Ai := ∂i logF. (2)

Different scalar-tensor models are characterized by spe-
cific values of the constants α and β. For example, in
standard Brans-Dicke theory α = 4 and β = 1, see [32].
In chameleon theory [26, 27], the values of α and β de-
pend on the matter type, see Appendix C.
It is worthwhile to stress that the important feature

of the multipolar approach, which we pursue in the next
section to derive the dynamics of test bodies, is that the
result does not depend on the explicit form of the La-
grangians for the gravitational and the scalar fields.

III. EQUATIONS OF MOTION

We derive equations of motion using the Mathisson-
Papapetrou-Dixon [33–36] approach by integrating the
conservation law (1). This can be done in a most con-
venient way with the help of the geodesic expansion
technique of Synge [37]. Denoting the world function
by σ and the parallel propagator by gyx, we introduce
integrated moments to an arbitrary multipolar order
n = 0, 1, 2, . . . by:

py1...yny0 := (−1)n
∫

Σ(s)

σy1 · · ·σyngy0
x0

√
−gtx0x1dΣx1

,

(3)

ky2...yn+1y0y1 := (−1)n
∫

Σ(s)

σy1 · · ·σyngy0
x0
gy1

x1

√
−gtx0x1wx2dΣx2

. (4)

Here we use a condensed notation so that yn denotes
indices at the point y. The point y we associate with the
world-line y(s) of an extended test body, parametrized by
the proper time s. As usual, the integrals are performed
over spatial hypersurfaces Σ(s).

A. Pole-dipole equations of motion

In the pole-dipole approximation, an extended body is
characterized by the multipole moments pa, pab, kab, kabc.
Using the general multipolar scheme [38] we derive the
equations of motion for these moments:

0 = k(a|c|b) − v(apb)c, (5)

D

ds
pab = kba − vapb − Vdc

bkacd, (6)

D

ds
pa = −Vcbakbc − Vdc

a
;bk

bcd − 1

2
Ra

cdb

(

kbcd + vdpbc
)

.

(7)

Here va := dya/ds denotes the normalized four-velocity
of a body. Since ka[bc] = 0, we can solve (5) to find

explicitly

kabc = vapcb + vcp[ab] + vbp[ac] + vap[bc]. (8)

Plugging this into (6) and (7) and taking into account (2),
we obtain the generalized Mathisson-Papapetrou-Dixon
system

DPa

ds
=

1

2
Ra

bcdv
bJ cd − βξfa − βξb∇bf

a, (9)

DJ ab

ds
= − 2v[aPb] − 2βξ[af b]. (10)

Here fa := F−αAa, and following [32, 38, 39], we in-
troduce the generalized total energy–momentum 4-vector
and the generalized total angular momentum by

Pa := F−αpa + pba∇bF
−α, (11)

J ab := F−αLab. (12)

The orbital angular moment is defined by Lab := 2p[ab],
and we denoted

ξa := gbck
abc, ξ := gabk

ab. (13)

B. Monopolar equations of motion

At the monopolar order, the only nontrivial moments
are pa, and kab. The system (5)-(7) then reduces to

0 = kba − vapb, (14)

Dpa

ds
= −Vcb

akbc. (15)

Making use of k[ab] = 0, the first equation yields v[apb] =
0, hence we have

pa =Mva =⇒ ξ =M, (16)

with the mass M := vapa. Substituting (14) and (16)
into (15) we find

D(Mva)

ds
= αMva

1

F

dF

ds
− βM

1

F
∇aF. (17)

Contracting this with va, we derive

dM

ds
=M(α− β)

1

F

dF

ds
, (18)

and with the help of this we write (17) in the final form

Dva

ds
= − β(gab − vavb)

∇bF

F
. (19)

Quite remarkably, we thus find that the dynamics of an
extended test body in the monopole approximation is
independent of the body’s mass. In case of a trivial
coupling function F , equation (19) reproduces the well
known general relativistic result.
Interestingly, the mass of a body is not constant: its

dynamics is described by (18): we can solve this differ-
ential equation to find explicitly the dependence of mass
on the scalar function: M = Fα−βM0 with M0 = const.
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IV. CONCLUSIONS

Our main result is the system (9)-(10) that describes
the dynamics of extended test bodies in scalar-tensor
gravity. This is a direct generalization of the classic
general-relativistic Mathisson-Papapetrou-Dixon result.
The integration of these equations of motion (although a
nontrivial task), should form the basis for local system-
atic tests of scalar-tensor gravity by means of spinning
extended test bodies.

In the monopolar case, our analysis revealed a sur-
prisingly simple equation of motion (19). In contrast to
geodesic motion in General Relativity, freely falling mas-
sive test bodies in scalar-tensor gravity experience an ad-
ditional force, determined by the new scalar degrees of
freedom encoded in the function F . The simplicity of
(19) makes this equation an ideal candidate for the use
in combination with free fall experiments.

We stress that our method is complementary to the
ones used in [28–31]. In contrast to other methods it
does not require the use of the full field equations due to
its limitation to the test body case, and therefore bene-
fits from a certain simplicity. In particular it allows for
a straightforward generalization to other gravity theo-
ries [38], which significantly go beyond the framework of
scalar-tensor theories. Again we stress, that our results
do not depend on the explicit form of the Lagrangians
for the gravitational and the scalar fields.

A remarkable feature of (19) is the prediction that all
massive test bodies move in the same way, independently
of their mass. We thus demonstrate the validity of the
equivalence principle in scalar-tensor gravity. Namely,
in accordance with the weak equivalence principle, the
trajectory of a test particle depends only on the initial
position and velocity of the body, but not on its mass or
internal structure. It is worthwhile to note that such a
conclusion is valid for a wide class of models, including
the generalized Brans-Dicke theory (with β = 1) and also
for the chameleon theory (with β 6= 1).

This result is consistent with the previous indepen-
dent analysis [28, 29], which has shown that the total
scalar charge of a body is equal to its mass when the
scalar field self-interactions are neglected. The latter is
in agreement with the test body assumption that under-
lies the Mathisson-Papapetrou-Dixon approach, yielding
equations of motion of the first kind. When one goes be-
yond the test body approximation, however, the scalar
charge is no longer equal to the mass and a further study
is needed to fix their relation. The corresponding equa-
tions of motion (of the second and third kind, accord-
ing to [24]) are more complicated and the validity of the
equivalence principle is not guaranteed. For an overview
of different approximation methods in the context of the
relativistic problem of motion see [40].

Experimentalists are encouraged to use our results as a
framework to systematically test and constrain the effects
of scalar fields in gravity.
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Appendix A: Conventions & Symbols

Our basic conventions are as in [39]. In particular, we
use the Latin alphabet to label the spacetime coordinate
indices. The Ricci tensor is introduced by Rij := Rkij

k,
and the curvature scalar is R := gijRij . Note that our
curvature conventions differ by a sign from those in [37,
41]. The signature of the spacetime metric is assumed to
be (+1,−1,−1,−1), and κ = 8πG/c4 denotes Einstein’s
gravitational constant

Appendix B: Brans-Dicke theory

A wide class of scalar-tensor theories is described by

the action Itot =
∫

d4x
J

L+ Im on the spacetime with the

metric
J
gij . The gravitational Lagrangian density reads

J

L =
J√−g L(

J
g) with

L(
J
g) =

1

2κ

(

−F 2R(
J
g) +

J
gij

J
γAB∂iϕ

A∂jϕ
B − 2

J

U

)

.

(B1)

This generalizes the Brans-Dicke theory [12] to the case
[23] with N scalar fields ϕA (capital indices A,B,C =
1, . . . , N label the components of the multiplet). Here

F = F (ϕA),
J

U =
J

U(ϕA),
J
γAB =

J
γAB(ϕ

A). (B2)

The action Im =
∫

d4x
J√−g Lm(ψ, ∂ψ,

J
gij) describes the

universal minimal coupling of the matter fields ψ to grav-
ity.

The metric
J
gij measures distances in the Jordan ref-

erence frame and determines the Riemannian curvature

scalar R(
J
g). Making a conformal transformation

J
gij −→ gij = F 2Jgij , (B3)

we obtain a different metric on the spacetime manifold.
This is called an Einstein reference frame.
In the Einstein reference frame the action reads Itot =

∫

d4xL+ Im where the gravitational Lagrangian density
L =

√−gL with

L =
1

2κ

(

−R+ gijγAB∂iϕ
A∂jϕ

B − 2U
)

, (B4)
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and the matter action

Im =

∫

d4x
√
−gF−4Lm(ψ, ∂ψ, F

−2gij). (B5)

The scalar curvature R(g) is constructed from the Ein-
stein metric gij , and

γAB =
1

F 2
(
J
γAB + 6F,AF,B), U =

1

F 4

J

U. (B6)

Appendix C: Chameleon theory

In the chameleon theory [25–27], the universality of
the scalar-gravity coupling is abolished. Instead, one as-
sumes that there are several kinds of matter fields ψ(a)

that couple to the gravitational field via different metrics

g
(a)
ij = F−2βagij . The constants βa are different for each

kind of matter, and the matter action (B5) is generalized

to Im =
∑

a

I
(a)
m with

I(a)m =

∫

d4x
√

−g(a)L(a)
m (ψ(a), ∂ψ(a), g

(a)
ij ). (C1)

Different matter types ψ(a) do not interact with each
other directly. The gravitational action

∫

d4xL has the
usual form determined by the general Lagrangian (B4)
of a Brans-Dicke scalar-tensor theory in the Einstein ref-
erence frame.

The coefficients βa appear in the conservation laws
of the energy-momentum tensor, which for each kind of
matter have the generic form (1).
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