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Definitions

Deviation equation. Second order differential
equation for the 4-vector which measures the dis-
tance between reference points on neighboring
world lines in spacetime manifolds.

Relativistic geodesy. Science representing
the Earth (or any planet), including the mea-
surement of its gravitational field, in a four-
dimensional curved spacetime using differential-
geometric methods in the framework of Ein-
stein’s theory of gravitation (General Relativ-
ity).

Introduction

How does one measure the gravitational field in
Einstein’s theory? What is the foundation of
relativistic gradiometry? The deviation equation
gives answers to these fundamental questions.
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In Einstein’s theory of gravitation, i.e. General
Relativity, the gravitational field manifests itself
in the form of the Riemannian curvature tensor
Rabcd (Synge 1960). This 4th-rank tensor can be
defined as a measure of the noncommutativity of
the parallel transport process of the underlying
spacetime manifold (Synge and Schild 1978). In
terms of the covariant derivative ∇a, and for an
arbitrary tensor T c1...ck

d1...dl , it is introduced via

(∇a∇b −∇b∇a)T
c1...ck

d1...dl

=
k

∑

i=1

Rabe
ciT c1...e...ck

d1...dl

−
l

∑

j=1

Rabdj
eT c1...ck

d1...e...dl . (1)

General Relativity is formulated on a four-
dimensional (pseudo) Riemannian spacetime1,
and therefore the curvature tensor in Einstein’s
theory has twenty (20) independent components

1In our conventions the signature of the spacetime
metric is assumed to be (+1,−1,−1,−1)
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for the most general field configurations pro-
duced by nontrivial matter sources, whereas in
vacuum the number of independent components
reduces to ten (10). As compared to Newton’s
theory, the gravitational field thus has more de-
grees of freedom in the relativistic framework.

A central question in General Relativity, and
consequently in relativistic geodesy, is how these
components of the gravitational field can be de-
termined in an operational way. Historically,
Pirani (1956) was the first to point out that
one could determine the full Riemann tensor
with the help of a (sufficiently large) number of
test bodies in the vicinity of observer’s world
line. Pirani’s suggestion to measure the cur-
vature was based on the equation which de-
scribes the dynamics of a vector connecting two
adjacent geodesics in spacetime. In the litera-
ture this equation is known as Jacobi equation,
or geodesic deviation equation; its early deriva-
tions in a Riemannian context can be found in
Levi-Civita (1926), Synge (1926; 1927).

A modern derivation and extension
of the deviation equation, based on
(Puetzfeld and Obukhov 2016), is presented in
the next section. In particular, it is explicitly
shown, how a suitably prepared set of test
bodies can be used to determine all components
of the curvature of spacetime (and thereby
to measure the gravitational field) with the
help of an exact solution for the components
of the Riemann tensor in terms of the mutual
accelerations between the constituents of a
cloud of test bodies and the observer. This can
be viewed as an explicit realization of Szekeres’
“gravitational compass” (Szekeres 1965), or
Synge’s “curvature detector” (Synge 1960). In
geodetic terms, such a solution represents a
realization of a relativistic gradiometer or tensor
gradiometer, which has a direct operational
relevance and forms the basis of relativistic

Figure 1: Sketch of the two arbitrarily
parametrized world lines Y (t) and X(t̃), and the
geodesic connecting two points on these world
line. The deviation vector along the reference
world line Y is denoted by ηy.

gradiometry.

Deviation equation

Let us consider two curves Y (t) and X(t̃) in an
arbitrary spacetime manifold, cf. fig. 1. They
are not necessarily parameterized by the proper
time and we allow for general parameters t and
t̃ along the curves. Any two points x ∈ X and
y ∈ Y on the two curves are connected by the
geodesic, which is unique provided the curves are
sufficiently close.

Along the connecting geodesic, the world func-
tion σ(x, y) (Synge 1960) is defined, which mea-
sures the finite distance between the spacetime
points x and y. By definition σ(x, y) is a scalar
function, which equals half the square geodesic
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distance between the points x and y. Due to its
dependence on two points, σ(x, y) is also called
biscalar, or two-point function.

The covariant derivative of the world function
σy := ∇yσ at y is the conceptually closest ob-
ject to the connecting vector between the two
points y and x. To keep the formulas compact,
it is convenient to suppress the tensor indices,
and merely to display (as sub/superscripts) the
spacetime point to which the suppressed index
belongs. The higher order covariant deriva-
tives of the world function are then denoted by
σy

x1...y2... := ∇x1
. . .∇y2 . . . (σ

y).

By construction, σy is a tangent vector at the
point y with its length being the geodesic length
between y and x, and in flat spacetime it coin-
cides with the connecting vector. With an ac-
count of these properties, one can infer a prop-
agation equation for this “generalized” connect-
ing vector along the reference curve, cf. fig. 1.
Choosing Y (t) as the reference curve, we define
the generalized connecting vector to be:

ηy := −σy. (2)

For its covariant total derivative, we have

D

dt
ηy1 = −

D

dt
σy1

(

Y (t),X(t̃)
)

= −σy1
y2

∂Y y2

∂t
− σy1

x2

∂Xx2

∂t̃

dt̃

dt

= −σy1
y2u

y2 − σy1
x2
ũx2

dt̃

dt
, (3)

where in the last line we defined the velocities
uy := ∂Y y/∂t and ũx := ∂Xx/∂t̃ along the two
curves Y andX, see fig. 1. The second derivative

of (3) yields

D2

dt2
ηy1 = −σy1

y2y3u
y2uy3 − 2σy1

y2x3
uy2 ũx3

dt̃

dt

−σy1
y2a

y2 − σy1
x2x3

ũx2ũx3

(

dt̃

dt

)2

−σy1
x2
ãx2

(

dt̃

dt

)2

− σy1
x2
ũx2

d2t̃

dt2
, (4)

here we introduced the accelerations for both
curves, ay := Duy/dt, and ãx := Dũx/dt̃.

In fact, equation (4) is already the generalized
deviation equation, however, in order to give it
an operational meaning all the quantities should
be defined along the reference word line Y –
along which the observer moves and performs
his measurements. This is achieved by perform-
ing covariant expansions of all quantities around
the reference world line2, which results in the
expanded version of (4) in powers of the world
function. Up to the second order we have:

D2

dt2
ηy1 = ãy1

(

dt̃

dt

)2

− ay1

+
dt

dt̃

d2t̃

dt2
uy1 +

Dηy1

dt

dt

dt̃

d2t̃

dt2

− ηy4Ry1
y2y3y4

(

uy2uy3 + 2uy3
Dηy2

dt

)

+ O(σ2). (5)

This deviation equation describes the change of
the connecting vector ηy between two general
world lines. It is valid for completely general
parametrizations of the curves Y and X.

Equation (5) can be used to operationally
model the relative motion of two objects – in
the context of relativistic geodesy one may think

2The technical details of the covariant Taylor expan-
sion technique can be found in (Puetzfeld and Obukhov
2016).
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of two satellites – which are subject to gravita-
tional as well as other physical forces. The exter-
nal, non-gravitational, forces are represented by
the accelerations ãy and ay in (5). The gravita-
tional forces are encoded in the curvature tensor
Ry1

y2y3y4 . This fact can be utilized to develop
a measurement procedure for the gravitational
field by means of the deviation equation (5).

Measuring the gravitational field

The operational procedure, see fig. 2, is to mon-
itor the accelerations of a set of test bodies in
the vicinity of the observer who moves along
the reference world line Y . A mechanical ana-
logue would be to measure the forces between
the test bodies and the observer via intercon-
necting springs.

Being interested in the gravitational field,
we assume that the external accelerations in
(5) vanish. Furthermore, we assume that we
are dealing with structureless test bodies, in
other words the world lines Y and X become
geodesics. With the additional choice of a syn-
chronous parameterization of the world lines, see
(Puetzfeld and Obukhov 2016) for details, the
general deviation equation (5) then turns into
the geodesic deviation, or Jacobi, equation:

D2

ds2
ηa = Ra

bcdu
bηcud. (6)

Here s denotes the proper time along the ref-
erence curve. In order to exploit this equa-
tion operationally, the covariant derivative of
the deviation vector ηa needs to be rewritten
in terms of the standard (non-covariant) deriva-
tive. This can be achieved by employing nor-
mal coordinates along the world line of the ob-
server (Puetzfeld and Obukhov 2016), in which
the Levi-Civita connection Γab

c and its first

Figure 2: Sketch of the operational procedure to
measure the curvature of spacetime. An observer
moving along a world line Y monitors the ac-
celerations (m,n)Aa to a set of suitably prepared
test bodies (hollow circles). The number of test
bodies required for the determination of all cur-
vature components depends on the type of the
underlying spacetime.
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derivative take the form

Γab
c|Y = 0, ∂aΓbc

d|Y =
2

3
Ra(bc)

d, (7)

along Y . In the normal coordinates, the devia-
tion equation (6) is recast into

d2

ds2
ηa

|Y
=

4

3
Rabcdu

bηcud. (8)

This equation has the formal structure

acceleration = gravitational field ×

position × velocity2,

and it allows to express the curvature in terms of
measured and/or prescribed quantities. Equa-
tion (8) forms the basis for setting up a gravi-
tational compass or relativistic gradiometer by
means of free falling test bodies.

Gravitational compass (Rela-
tivistic gradiometer)

Recalling the idea of Pirani (1956), we now set
up a cloud of test bodies in the vicinity of the
observer. The goal is to find a configuration of
test bodies, which allows for a complete deter-
mination of the gravitational field.

For (n) bodies at locations (n)ηa relative to the
reference body, moving with relative (m) veloci-
ties (m)ua we end up with the system

(m,n)Aa
|Y
=

4

3
Rabcd

(m)ub (n)ηc (m)ud. (9)

Here we denote by (m,n)Aa the measured accel-
erations relative to the reference point Y of the
individual test bodies. Physically, these A’s cor-
respond to the springs in the mechanical com-
pass picture of Szekeres (1965).

In a general spacetime, all 20 independent
components of the curvature tensor are deter-
mined in terms of the accelerations (m,n)Aa and
velocities (m)ua, if we use the setup sketched in
fig. 3. This can be achieved with the help of
suitably prepared test bodies at locations

(1)ηa =









0
1
0
0









, (2)ηa =









0
0
1
0









,

(3)ηa =









0
0
0
1









, (10)

with velocities

(1)ua =









c10
0
0
0









, (2)ua =









c20
c21
0
0









,

(3)ua =









c30
0
c32
0









, (4)ua =









c40
0
0
c43









,

(5)ua =









c50
c51
c52
0









, (6)ua =









c60
0
c62
c63









.(11)

From the algebraic system (9), we find the com-
ponents of the Riemann curvature tensor in
terms of the velocity components cmi (where
m = 1, . . . , 6 and i = 0, 1, 2, 3) and the accel-
erations

(1,1)A1,
(1,1)A2,

(1,1)A3,
(1,2)A2,

(1,2)A3,
(1,3)A3,

(2,1)A2,
(2,1)A3,

(2,2)A2,
(2,2)A3,

(2,3)A3,
(4,1)A0,

(4,1)A2,
(4,1)A3,

(4,2)A0,
(4,2)A2,

(3,1)A0,
(3,2)A3,

(5,2)A3,
(5,3)A3,

(6,1)A1. (12)
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Figure 3: Symbolical sketch of the explicit gen-
eral compass solution in (14)-(33). In total 13
suitably prepared test bodies (hollow circles) are
needed to determine all 20 curvature compo-
nents. The observer is denoted by the black
circle. With the standard deviation equation
(1...6)ua, as well as (1...3)ηa are needed in the so-
lution.

This implies that 13 test bodies are needed to
measure the gravitational field completely. The
explicit solution is given in appendix A.1, and is
represented in graphical form in fig. 3.

Vacuum solution

In vacuum the number of independent compo-
nents of the curvature tensor is reduced to the
10 components of the Weyl tensor Cabcd. Re-
placing Rabcd in the compass solution and tak-
ing into account the symmetries of Weyl tensor
(in particular, the double-self-duality property
Cabcd = −1

4ǫabef ǫcdghC
efgh, where ǫabcd is the

totally antisymmetric Levi-Civita tensor with
ǫ0123 = 1), we may use a reduced compass setup
to completely determine the 10 vacuum compo-
nents of the gravitational field in terms of the

accelerations

(1,1)A1,
(1,1)A2,

(1,1)A3,
(1,2)A2,

(1,2)A3,
(2,1)A2,

(2,1)A3,
(2,2)A3,

(3,1)A0,
(4,1)A2. (13)

This implies that one needs 6 test bodies to mea-
sure the gravitational field in vacuum. The ex-
plicit solution is given in appendix A.2.

This completes the construction of a gravita-
tional compass (Szekeres 1965), or relativistic
gradiometer, on the basis of the geodesic devi-
ation equation (8).

We only note in passing, that current re-
search indicates a possible reduction of the
number of required test bodies if one makes
use of the generalized deviation equation (4).
A detailed discussion and a comparison to
other explicit compass solutions in the literature
(Ciufolini and Demianski 1986) can be found in
(Puetzfeld and Obukhov 2016).

Summary

Deviation equations form the theoretical basis
for many experiments. They provide the founda-
tion of relativistic gradiometry, and allow for the
determination of the gravitational field (the cur-
vature) by means of acceleration measurements
in the vicinity of an observer.

The minimal number of test bodies required
to establish all components of gravitational field
can be obtained with the help of deviation equa-
tions. In particular, one may use such equations
to develop explicit detector setups for relativistic
gradiometers.

In relativistic geodesy, based on Einstein’s
theory of General Relativity, one needs at least
13 test bodies to determine all gravitational field
components in a general spacetime. In a vacuum
spacetimes this number is reduced to 6.
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Figure 4: Sketch of the explicit compass solu-
tion in (34)-(43) for the vacuum case. In total
6 suitably prepared test bodies (hollow circles)
are needed to determine all 10 components of
the Weyl tensor. The observer is denoted by the
black circle. With the standard deviation equa-
tion, only (1...4)ua, as well as (1...2)ηa are needed
in the solution.
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A Explicit solutions

A.1 General spacetime

01 : R1010 =
3

4
(1,1)A1c

−2
10 , (14)

02 : R2010 =
3

4
(1,1)A2c

−2
10 , (15)

03 : R3010 =
3

4
(1,1)A3c

−2
10 , (16)

04 : R2020 =
3

4
(1,2)A2c

−2
10 , (17)

05 : R3020 =
3

4
(1,2)A3c

−2
10 , (18)

06 : R3030 =
3

4
(1,3)A3c

−2
10 , (19)

07 : R2110 =
3

4
(2,1)A2c

−1
21 c

−1
20 −R2010c

−1
21 c20,

(20)

08 : R3110 =
3

4
(2,1)A3c

−1
21 c

−1
20 −R3010c

−1
21 c20,

(21)

09 : R0212 =
3

4
(3,1)A0c

−2
32 +R2010c

−1
32 c30, (22)

10 : R1212 =
3

4
(2,2)A2c

−2
21 −R2020c

2
20c

−2
21

−2R0212c
−1
21 c20, (23)

11 : R3220 =
3

4
(3,2)A3c

−1
32 c

−1
30 −R3020c

−1
32 c30,

(24)

12 : R0313 =
3

4
(4,1)A0c

−2
43 +R3010c

−1
43 c40, (25)

13 : R1313 =
3

4
(2,3)A3c

−2
21 −R3030c

2
20c

−2
21

−2R0313c
−1
21 c20, (26)

14 : R0323 =
3

4
(4,2)A0c

−2
43 +R3020c

−1
43 c40, (27)

15 : R2323 =
3

4
(4,2)A2c

−2
43 −R2020c

−2
43 c

2
40

+2R3220c
−1
43 c40, (28)
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16 : R3132 =
3

8
(5,3)A3c

−1
52 c

−1
51 −

1

2
R3030c

−1
52 c

−1
51 c

2
50

−R0313c
−1
52 c50 −R0323c

−1
51 c50

−
1

2
R1313c

−1
52 c51 −

1

2
R2323c52c

−1
51 ,

(29)

17 : R1213 =
3

8
(6,1)A1c

−1
63 c

−1
62 −

1

2
R1010c

−1
63 c

−1
62 c

2
60

+R2110c
−1
63 c60 +R3110c

−1
62 c60

−
1

2
R1212c

−1
63 c62 −

1

2
R1313c63c

−1
62 ,

(30)

18 : R0231 =
1

4
(4,1)A2c

−1
40 c

−1
43 −

1

4
(2,2)A3c

−1
20 c

−1
21

+
1

3

(

R3020c20c
−1
21 +R3121c21c

−1
20

−R2010c40c
−1
43 −R2313c43c

−1
40

)

, (31)

19 : R0312 =
1

4
(4,1)A2c

−1
40 c

−1
42 +

1

2
(2,2)A3c

−1
20 c

−1
21

−
1

3

(

2R3020c20c
−1
21 + 2R3121c21c

−1
20

+R2010c40c
−1
43 +R2313c43c

−1
40

)

, (32)

20 : R3212 =
3

4
(4,1)A3c

−1
20 c

−1
21 c50c

−1
52

−
3

4
(5,2)A3c

−1
51 c

−1
52

+R3121c
−1
52

(

c51 − c50c21c
−1
20

)

+R3220c50c
−1
51

+R3020c50c
−1
52

(

c50c
−1
51 − c20c

−1
21

)

.

(33)

A.2 Vacuum spacetime

01 : C1010 =
3

4
(1,1)A1c

−2
10 , (34)

02 : C2010 =
3

4
(1,1)A2c

−2
10 , (35)

03 : C3010 =
3

4
(1,1)A3c

−2
10 , (36)

04 : C2020 =
3

4
(1,2)A2c

−2
10 , (37)

05 : C3020 =
3

4
(1,2)A3c

−2
10 , (38)

06 : C2110 =
3

4
(2,1)A2c

−1
21 c

−1
20 −C2010c

−1
21 c20,

(39)

07 : C3110 =
3

4
(2,1)A3c

−1
21 c

−1
20 −C3010c

−1
21 c20,

(40)

08 : C0212 =
3

4
(3,1)A0c

−2
32 + C2010c

−1
32 c30, (41)

09 : C0231 =
1

4
(4,1)A2c

−1
40 c

−1
43 −

1

4
(2,2)A3c

−1
20 c

−1
21

+
1

3
C3020

(

c20c
−1
21 + c21c

−1
20

)

−
1

3
C2010

(

c40c
−1
43 + c43c

−1
40

)

, (42)

10 : C0312 =
1

4
(4,1)A2c

−1
40 c

−1
42 +

1

2
(2,2)A3c

−1
20 c

−1
21

−
2

3
C3020

(

c20c
−1
21 + c21c

−1
20

)

+
1

3
C2010

(

c40c
−1
43 + c43c

−1
40

)

. (43)
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