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Colliding or noncolliding plane fronted electromagnetic or gravitational waves are

the asymptotic limit of Robinson–Trautman spherical electromagnetic or gravitational
waves. Noncolliding plane fronted waves contain no information about their sources

whereas colliding waves contain information about possibly the motion of their sources.

As a first step to investigate the latter phenomenon we construct an asymptotic limit
of Liénard–Wiechert electromagnetic fields in the context of Minkowskian space–time.

This has the advantage that the source is well known and the calculations can be carried

out in full detail. The final result is an algebraically general Maxwell field which con-
sists of colliding plane fronted waves in a subregion of Minkowskian space–time and an

interesting byproduct is a novel perspective on a Maxwell field originally discovered by

Bateman.

Keywords: Classical general relativity; Exact solutions; Fundamental problems and gen-
eral formalism.
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1. Introduction

We recently1 presented a scheme implementing an asymptotic plane fronted limit

of Robinson–Trautman2,3 spherical electromagnetic and gravitational waves. The

resulting plane fronted waves can be either waves with noncolliding wave fronts (the

so–called pp–waves4–6) or waves with colliding wave fronts (the so–called Kundt7

waves). The noncolliding waves are disengaged from their sources whereas the col-

liding waves contain information about their sources such as possibly the motion of
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the sources. The present paper is a first step to investigate in detail this latter phe-

nomenon. For simplicity and to facilitate explicit detail we restrict ourselves here to

electromagnetic fields (in the absence of gravitational fields) for which the source is

well known. Hence we take as our starting point Liénard–Wiechert electromagnetic

fields with source world lines in Minkowskian space–time which are completely gen-

eral in the sense that they can be time–like, light–like or space–like. Unlike the pure

radiation fields considered in Ref. 1 the Liénard–Wiechert field of a point charge is

predominantly radiative, with spherical wave fronts, only in a region of Minkowskian

space–time at large spatial distance from the world line of the charge. Otherwise

the electromagnetic field is algebraically general. This pattern is replicated in the

asymptotic limit derived here which is algebraically general but there is a region of

Minkowskian space–time in which the asymptotic electromagnetic field is predomi-

nantly radiative. In addition the construction described here turns out to be a novel

perspective on a Maxwell field originally discovered by Bateman8.

The gravitational analogue of the Liénard–Wiechert solutions of Maxwell’s vac-

uum field equations are the Robinson–Trautman solutions2,3 of Einstein’s vacuum

field equations. As well as including the Schwarzschild metric these solutions are the

only known exact solutions of Einstein’s field equations describing vacuum gravita-

tional fields containing gravitational radiation from isolated sources. The so–called

C–metric is an important explicit example of the latter solutions and is currently

an active area of research (see, for example Refs. 9, 10). If the radiating point–like

sources are accelerating then asymptotically the spherical wavefronts will collide11.

The Liénard–Wiechert electromagnetic fields are a particularly surveyable example

of this phenomenon. They can be studied without reference to an external field

driving the source since equations of motion are an addition to the field equations

in Maxwell’s electrodynamics. In the gravitational case the equations of motion of

the sources are embedded in the field equations and so a complete description of

the asymptotic limit of a Robinson–Trautman space–time requires the addition of

an external field which will appear in the equations of motion. This complicates the

extension of the work described in this paper to the gravitational case by introduc-

ing the Bondi–Sachs generalisation of the Robinson–Trautman solutions (for recent

work on the Bondi–Sachs12,13 space–times in related contexts see Refs. 14, 15, 16)

and thus will necessarily involve approximations.

Our scheme for constructing an asymptotic limit relies initially on the introduc-

tion of two real–valued functions and one complex–valued function via the para-

metric equations of an arbitrary world line in Minkowskian space–time. Since we

are constructing a foundation to effectively facilitate a limit which takes us from

the null cone histories of spherical wave fronts emitted by an accelerating charge to

the null hyperplane histories of colliding (in general) plane fronted electromagnetic

waves, the special parametrization of an arbitrary world line designed to achieve

this is not trivial and has been developed in Refs. 17, 11. This is described in de-

tail in section 2. A form of the Liénard–Wiechert fields exploiting the formalism of

section 3 is given in section 4 followed in the next section by the asymptotic limit.
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The paper ends with a brief discussion in section 5.

2. Geometrical Preliminaries

Let Xi = (X,Y, Z, T ) with i = 1, 2, 3, 4 be rectangular Cartesian coordinates and

time in Minkowskian space–time with line element

ds2 = (dX)2 + (dY )2 + (dZ)2 − (dT )2 = ηij dX
i dXj . (1)

Latin indices take values 1, 2, 3, 4. The summation over repeated indices convention

applies and ηij = ηji = diag(1, 1, 1,−1). Indices will be raised using ηij , with

ηij = ηji defined by ηij ηjk = δik, and lowered using ηij . We use units for which the

speed of light in a vacuum c = 1. An arbitrary world line in Minkowskian space–

time has parametric equations Xi = wi(u) with u an arbitrary parameter along it.

Null cones with vertices on this world line have equations u(X,Y, Z, T ) = constant

with u(X,Y, Z, T ) given implicitly by

ηij (X
i − wi(u))(Xj − wj(u)) = 0 . (2)

Differentiating this partially with respect to Xk and denoting the partial derivative

with a comma we arrive at

u,k = −ξk
r

with ξk = ηkl ξ
l, ξl = X l − wl(u) , (3)

and

r = −ηij ẇ
i ξj = −ẇj ξ

j . (4)

Here ẇi = dwi/du and in general differentiation with respect to u will be indicated

with a dot. Also r is a measure of the distance of the event with coordinates Xi

from the world line, with r = 0 if and only if Xi = wi(u), c.f. figure 1.

Fig. 1. The distance r in eq. (4) can be the retarded distance r′ of the event P (Xi) to the world

line Xi = wi(u) or the advanced distance r′′ of P to the world line17. For the Liénard–Wiechert

field r is the retarded distance.
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We wish to construct a limit in which the null cones u(X,Y, Z, T ) = constant

given by (2) are replaced by null hyperplanes u(X,Y, Z, T ) = constant given by

ai(u)X
i+n(u) = 0 with ηij a

i aj = 0. We shall assume that ṅ = dn/du ̸= 0 so that

the null vector field ai(u) is unique up to multiplication by an arbitrary real–valued

function of u. Thus only the direction of this null vector field is significant as far

as the equation of the null hyperplanes is concerned. This direction is determined

by two real–valued functions of u or equivalently by one complex–valued function

l(u) with complex conjugate l̄(u). How this complex–valued function of u emerges

is described briefly in the caption for figure 2. As a result we can write the null

vector field ai(u) as

a1 + ia2 = 2
√
2 l(u) , a3 + a4 = 4 l(u)l̄(u) , a3 − a4 = −2 . (5)

It useful for achieving the limiting case we require (see Refs. 11, 18) to express the

four real–valued functions wi(u) in terms of the complex–valued function l(u) and

two real–valued functions m(u) and n(u) as follows:

w1 + iw2 = −2
√
2 l

m
, w3 + w4 = n− 4 l l̄

m
, w3 − w4 =

2

m
. (6)

Consequently

ηij ẇ
i ẇj =

4κ

m2
with κ = 2 |β|2 − 1

2
αγ , (7)

and β(u) = l̇(u), α(u) = ṁ(u), γ(u) = ṅ(u). Thus the world line Xi = wi(u) is

time–like, space–like or null depending upon whether κ is negative, positive or zero

respectively. From (3) and (5) we have

ξ1 + iξ2 = X + iY +
1

m
(a1 + ia2) , (8)

ξ3 + ξ4 = Z + T − n+
1

m
(a3 + a4) , (9)

ξ3 − ξ4 = Z − T +
1

m
(a3 − a4) . (10)

Using these in (2) we find that

ai X
i + n =

nm

2
(Z − T )− m

2
ηij X

i Xj . (11)

We see from this that if m(u) = 0 then u(X,Y, Z, T ) is given implicitly by

ai(u)X
i + n(u) = 0 , (12)

and thus the hypersurfaces u(X,Y, Z, T ) = constant are null hyperplanes. Clearly

these null hyperplanes intersect if ȧi ̸= 0 (⇔ β(u) = l̇(u) ̸= 0 by (7)). Consequently

if the null hyperplanes are the histories in Minkowskian space–time of the wave

fronts of electromagnetic waves (as they turn out to be below) then these waves in
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general have colliding wave fronts. Next using (5) and (7) we have

ẇ1 + iẇ2 = − 1

m
(ȧ1 + iȧ2) +

α

m2
(a1 + ia2) , (13)

ẇ3 + ẇ4 = γ − 1

m
(ȧ3 + ȧ4) +

α

m2
(a3 + a4) , (14)

ẇ3 − ẇ4 =
α

m2
(a3 − a4) , (15)

and combining these with (8)–(10) we can deduce that

ẇi ξ
i = − 1

m
ȧi ξ

i +
α

m2
ai ξ

i − γ

m

(
1− m

2
(Z − T )

)
, (16)

while

ȧi ξ
i = ȧi X

i and ai ξ
i = ai X

i + n , (17)

and so, by (4) and (16),

r =
1

m
(ȧi X

i + γ)− α

m2
(ai X

i + n)− 1

2
γ (Z − T ) . (18)

From this we observe that if m(u) → 0 then r → ∞. This will be how we will imple-

ment the asymptotic limit below when applied to a generalized Liénard–Wiechert

electromagnetic field.

As a final preliminary we introduce, in addition to u, new coordinates ζ, ζ̄ and

v (following Ref. 18) via

X + iY =
√
2
(
1− mv

2

)
ζ −

√
2 l v , (19)

Z − T = v , (20)

Z + T = 2
(
1− mv

2

){
l̄ ζ + l ζ̄ +

1

2
mζζ̄ +

1

2
n

}
−

(
2 l l̄ − 1

2
nm

)
v , (21)

with (21) obtained from (11) following substitution of (19) and (20) into (11). In

the coordinates ζ, ζ̄, u, v the Minkowskian line element (1) reads

ds2 = 2
(
1− mv

2

)2
∣∣∣∣∣dζ − v qζ̄(

1− mv
2

)du∣∣∣∣∣
2

+ 2 q du dv , (22)

with

q(ζ, ζ̄, u) = β̄ ζ + β ζ̄ +
1

2
α ζζ̄ +

1

2
γ and qζ̄ =

∂q

∂ζ̄
. (23)

3. Liénard–Wiechert Fields

If e = constant is the electric charge on a source having world line Xi = wi(u) in

Minkowskian space–time then the potential 1–form of interest to us is

A =
e

r
ẇi dX

i . (24)
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Here the world line Xi = wi(u) (⇔ r = 0) is arbitrary. If the world line is time–

like and u is proper–time or arc length along it then (24) is the Liénard–Wiechert

potential 1–form. If the world line is light–like then (24) is Synge’s19 potential 1–

form. We shall initially require (24) in the coordinates ζ, ζ̄, u, v. With r given by

(18) the transformations (19)–(21) give us

ai X
i = −m

(
1− mv

2

)
ζζ̄ − n and

ȧi X
i = 2

(
1− mv

2

)
(β̄ ζ + β ζ̄) , (25)

and thus (18) becomes

r =
2 q

m

(
1− mv

2

)
. (26)

Next with ẇi given by (13)–(15) we have

ẇi dX
i = − 1

m
ȧi dX

i +
1

2
γ (dZ − dT ) +

α

m2
ai dX

i . (27)

Now the transformations (19)–(21) yield

ai dX
i =

1

2
m2ζ ζ̄ dv −m

(
1− mv

2

)
(ζ̄ dζ + ζ dζ̄)

+

{
1

2
mαv ζ ζ̄ − 1

2
mγ v − 2

(
1− mv

2

)
q

}
du ,

(28)

and

ȧi dX
i = −m(β̄ ζ + β ζ̄)dv + 2

(
1− mv

2

)
(β̄ dζ + β dζ̄)

−{α v(β̄ ζ + β ζ̄) + 4 |β|2v}du . (29)

Fig. 2. In R3 the unit 2–sphere has equation (a1/a4)2 + (a2/a4)2 + (a3/a4)2 = 1. The stereo-
graphic projection of the 2–sphere onto the equatorial plane is given by a1+i a2 = (a4−a3)(ξ+i η),
a3 = (a4−a3)(ξ2+η2−1)/2 and a4 = (a4−a3)(ξ2+η2+1)/2. We are free to choose a4−a3 = 2
and then writing ξ + i η =

√
2 l(u) we obtain (5).
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Consequently we can write (27) as

ẇi dX
i = q dv − 2

m

(
1− mv

2

)
(qζ dζ + qζ̄ dζ̄)

+
2

m

(
α v q + κ v − α

q

m

)
du . (30)

Substituting (26) and (30) into (24) and simplifying we find that

A = e

{
q−1qu +

(
1− mv

2

)−1

κ q−1v

}
du

−e d
{
log

[
mq

(
1− mv

2

)]}
. (31)

Here qu = ∂q/∂u and we denote similarly partial derivatives with respect to ζ and ζ̄

below. Hence the potential 1–form of interest, modulo a pure gauge term (an exact

differential in this case), reads

A = e

{
q−1qu +

(
1− mv

2

)−1

κ q−1v

}
du , (32)

and this is a 1–form field on Minkowskian space–time with line element given by

(22) and (23). The candidate for Maxwell field is the exterior derivative of (32)

F = dA given by

F = e

{
(log q)uζ −

(
1− mv

2

)−1

q−2qζ κ v

}
dζ ∧ du

+e

{
(log q)uζ̄ −

(
1− mv

2

)−1

q−2qζ̄ κ v

}
dζ̄ ∧ du

−e
(
1− mv

2

)−2

q−1κ du ∧ dv . (33)

The 2–form dual to this 2–form is

∗F = −i e(log q)uζ dζ ∧ du+ i e(log q)uζ̄ dζ̄ ∧ du+ i e q−2κ dζ ∧ dζ̄ . (34)

From this Maxwell’s equation d∗F = 0 is satisfied provided

q2
∂2

∂ζ∂ζ̄
(q−1qu)− κ q−1qu +

1

2
κu = 0 . (35)

This is automatically satisfied since

q2
∂2

∂ζ∂ζ̄
(q−1qu)− κ q−1qu +

1

2
κu = Ψu − 2 q−1qu Ψ , (36)

with

Ψ = q2
∂2

∂ζ∂ζ̄
(log q) +

1

2
κ , (37)

and with κ given by (6) and q by (23) we have Ψ = 0.



April 3, 2024 2:18 WSPC/INSTRUCTION FILE planeem

8 Peter A. Hogan, Dirk Puetzfeld

4. Asymptotic Limit of Liénard–Wiechert

The asymptotic limit of the Liénard–Wiechert fields in the previous section is ob-

tained by letting m(u) → 0. This results in the Minkowskian line element (22)

taking the form

ds2 = 2 |dζ − β(u) v du|2 + 2 q̂ du dv with q̂ = β̄ ζ + β ζ̄ +
1

2
γ . (38)

The m(u) → 0 limit of the potential 1–form (32) is

A = e {q̂−1q̂u + κ q̂−1v} du with κ = 2 |β|2 . (39)

To survey this vacuum electromagnetic field it is helpful to express it in coordinates

Xi = (X,Y, Z, T ). These are obtained by taking the m(u) → 0 limit of (19)–(21)

resulting in

X + iY =
√
2 ζ −

√
2 l v , (40)

Z − T = v , (41)

Z + T = 2

(
l̄ ζ + l ζ̄ +

1

2
n

)
− 2 l l̄ v . (42)

Substituting for ζ and v from (40) and (41) into (42) we arrive at the equation

giving u(X,Y, Z, T ) implicitly:

ai(u)X
i + n(u) = 0 , (43)

in agreement with (12). It thus follows that

u,i = −ai
ρ

with ρ = ȧi X
i + γ . (44)

Using (40)–(42) we find that

q̂ =
1

2
(ȧi X

i + γ) =
1

2
ρ and q̂u + κ v =

1

2
(äi X

i + γ̇) . (45)

As a result we can write (39) as A = Ai dX
i with the 4–potential having contravari-

ant components

Ai = − e(äj X
j + γ̇)

(ȧk Xk + γ)2
ai . (46)

However

e
[
log(ȧj X

j + γ)
]
,i
=

e ȧi
(ȧk Xk + γ)

− e (äj X
j + γ̇)

(ȧk Xk + γ)2
ai , (47)

and thus, modulo a gauge transformation, we can write the 4–potential (46) in the

simpler form

Ai = −e ȧi

ρ
. (48)

We note that

ρ,i = ȧi − ρ−1(äj X
j + γ̇)ai ⇒ ηij ρ,i ρ,j = ȧi ȧ

i and ρ,i a
i = 0 , (49)
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while

□ρ ≡ ηij ρ,ij = −2

ρ
äi ai =

2

ρ
ȧi ȧi , (50)

and thus it straightforward to confirm that (48) satisfies Maxwell’s vacuum field

equations in the form

Ai
,i = 0 and □Ai = 0 . (51)

The Maxwell tensor has components

Fij = Aj,i −Ai,j =
Πij

ρ2
+

Nij

ρ3
, (52)

with

Πij = e (ai äj − äi aj) ⇒ Πij a
j = −e (ȧj ȧ

j)ai , (53)

Nij = e (äk X
k + γ̇)(ai ȧj − ȧi aj) ⇒ Nij a

j = 0 . (54)

We see that this asymptotic Liénard–Wiechert field is algebraically general with

ai one of the principal null directions. In the region of Minkowskian space–time in

which the dimensionless quantity ρ = ȧi X
i+γ is small the Maxwell field is predom-

inantly radiative with propagation direction ai and the electromagnetic radiation is

plane fronted with colliding wave fronts.

In the region of space–time corresponding to small values of ρ we see from

(49) that the gradient of ρ is predominantly in the direction of the propagation

direction of the radiation in space–time. Also the integral curves of the gradient of

ρ diverge when ρ = 0 by (50). This suggests that the region of space–time for which

ρ is small contains the history of a complicated source of the electromagnetic field.

This Maxwell field was originally found by Bateman8 (his eqs. (299) and (302)).

The significance of this solution has been mysterious up to now. The present paper

elucidates its relationship to the Liénard–Wiechert field and this appears to be new.

Qualitatively this Bateman field is algebraically similar to the Liénard–Wiechert

field. The Liénard–Wiechert field has an algebraically general part (or “Coulomb

part”) in the neighborhood in space–time of the history of the charge and an alge-

braically special part (or “radiative part”) at large spatial distance from the history

of the charge. The Bateman field also has two corresponding algebraic parts (52)

and (53) which are distinguished by values of the dimensionless parameter ρ.

5. Discussion

Our motivation for the construction in sections 2 and 3 leading to the asymptotic

limit of Liénard–Wiechert described in section 4 is the following: The Liénard–

Wiechert 4–potential is Ai = e ẇi(u)/r and its asymptotic limit, r → ∞, is zero.

However we found an asymptotic limit involving r → ∞ accompanied by ẇi(u) → ∞
in which the potential 1–form can have a finite, nonzero limit. Since ẇi is a function

only of u we had to find a way of writing ẇi in terms of an arbitrary function of
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u, m(u) say, and a way of writing r in terms of m(u) so that when the asymptotic

limit is triggered by m(u) → 0 (say) then A has a finite, nonzero limit.

In addition, since the Liénard–Wiechert field contains spherical fronted electro-

magnetic waves we expect its asymptotic limit to contain plane fronted electromag-

netic waves. This required the limit to be capable of taking us from the null cones in

eq. (2) to the null hyperplanes in eq. (12). This involved another arbitrary function

of u, n(u) in eq. (12), to avoid the null hyperplanes all intersecting at Xi = 0. Thus

implementing the asymptotic limit involved two arbitrary functions m(u) and n(u).

This was achieved explicitly by a combination of eq. (26) and eq. (30) together

with a gauge transformation to eventually obtain eq. (32) prior to taking the limit

m → 0.

The original Liénard–Wiechert field has a region of Minkowskian space–time at

large distance from the world line of the charge in which the electromagnetic field is

predominantly radiative with spherical wave fronts. The asymptotic limit described

here is similar in that it possesses a region of Minkowskian space–time in which

the electromagnetic field is predominantly radiative but with plane wave fronts. In

general the asymptotic field, in similar fashion to the Liénard–Wiechert field, is

algebraically general with principal null directions ai and bi so that

Fij = e
k2

ρ2
(ai bj − aj bi) , (55)

with k2 = ȧi ȧ
i and

bi = k−2äi + ρ−1k−2(äj X
j + γ̇)ȧi

+

{
1

2
k−4äj ä

j +
1

2
k−2ρ−2(äj X

j + γ̇)2 + k−3k̇ ρ−1(äj X
j + γ̇)

}
ai . (56)

Thus bi bi = 0 and bi ai = −1.

It would be interesting to discover the gravitational analogue of the Maxwell

field described in this paper.
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