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CHAPTER 1. BASICS 1.1. PART I - FUN WITH TENSORS

The tensor gµν of rank (0, 2) is called metric. The metric tensor allows us to construct
a scalar from two infinitesimal displacements dxµ

1 and dxν
2 at the some point A, i.e.

gµνdxµ
1dxν

2. This is a direct generalization of the scalar product of two vectors as we
know it from Euclidean space. Note the difference to a space without metric where we
could only form scalars from two vectors if one vector is contravariant and the other
covariant. Our ability to form the product of two covariant or contravariant quantities
allows us to define the co-/contravariant equivalent to a contra-/covariant quantity, i.e.
to raise and lower the indices of quantities. Examples:

aµ = gµνa
ν, T ν

µ = gµαT να, Tµν = gµαgνβT αβ, . . . .

The contravariant form of the metric is defined via gµαgνα = δν
µ. Two important the-

orems with respect to the metric are: (i) At a given point it is always possible to find

a coordinate transformation xµ → x̃µ such that g̃µν =

{

±1 for µ = ν
0 for µ 6= ν

. (ii) If we

consider only real transformations the number of minus and plus signs in the diagonal
form of the metric does not change. Since we now know what a metric looks like we can
also work out the form of a connection in a Riemannian space. Under the assumption
that the parallel transport of a vector does not change its length one obtains

Γα
µν =

1

2
gαβ (gβν,µ + gµβ,ν − gµν,β) . (1.21)

The quantities in (1.21) are usually called Christoffel symbols. This form of the connec-
tion is exclusively used in Riemannian geometry and is completely determined by the
metric17. Let us now come back to the geodesic equation and its form in a Riemannian
space. Of course the connection in (1.18) is now the connection from (1.21). Since we

are now able to measure distances it is rather natural to use the proper length s =
∫ B

A
ds

of a curve as parameter λ. With λ = s we shall have dxµ

dλ
= dxµ

ds
≡ uµ, and the tangent

vector uµ is normalized via: gµνu
µuν = 1. The autoparallel equation (1.18) takes the

form

duµ

ds
+ Γµ

αβuαuβ = f (s)uµ.

It can be shown that s is an affine parameter, therefore we end up with

duµ

ds
+ Γµ

αβuαuβ = 0. (1.22)

This equation is called geodesic equation. Furthermore one can proof that geodesics in
a Riemannian space are either the curves of maximal or minimal length connecting the
points A and B. Since we already know the general definition of the curvature tensor we
can now define the Riemann tensor which is nothing else than (1.19) together with the
symmetric connection from (1.21). The following symmetries hold: Rρ

λµν = −Rρ
λνµ,

17Exercise: Show that gµν;σ = 0.
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1.1. PART I - FUN WITH TENSORS CHAPTER 1. BASICS

Rρ
[λµν] = 0, Rσ

µ[να;β] = 018, and19 Rµναβ = −Rνµαβ = Rαβµν . Thus, in a 4 dimensional
space the Riemann tensor has 20 independent components. The contraction Rα

αµν

vanishes identically. The only non-vanishing contraction is the Ricci tensor 20

Rµν := Rα
µνα,

which (in a 4 dimensional spacetime) has 10 independent components. The contraction
of the Ricci tensor

R := Rµ
µ

is called the Ricci scalar, the combination of the Ricci tensor and scalar

Gµν := Rµν −
1

2
gµνR

is called the Einstein tensor. The covariant divergence of the Einstein tensor vanishes,
i.e. Gµ

ν;µ = 0.

Weyl-Tensor Another important quantity with respect to the classification of differ-
ent spacetimes is the so-called Weyl tensor. We briefly mention some of its properties
here. The Riemann tensor may be expressed (in 4 dimensions) by trace-free tensor
quantities in the following way

Rµναβ = Cµναβ +
1

2
(gµβLνα + gβαLµβ − gµαLνβ − gνβLµα)

+
1

12
R (gµβgνα − gµαgνβ) , (1.23)

with Lµν := Rµν − 1
4
gµνR, which satisfies Lµ

µ. The tensor Cµναβ with Cα
µνα = 0 is

defined by (1.23) and called the Weyl tensor or conformal curvature tensor (because
C̃µ

ναβ = Cµ
ναβ under conformal transformations g̃µν = φgµν). It has the same (in

addition to Cα
µνα = 0) symmetries as the Riemann tensor Cµναβ = −Cνµαβ = −Cµνβα =

Cαβµν , Cµ[ναβ] = 0, and therefore 10 independent components.

Isometries Without giving a derivation at this point, we notice that the condition for
the existence of isometric mappings is the existence of solutions Xµ of the equation

Xµ;ν + Xν;µ = 0. (1.24)

This equation is called Killing equation and vectors Xµ which satisfy it are called Killing

vectors. The existence of a Killing vector expresses a certain intrinsic symmetry property
of the space.

18This is the Bianchi identity.
19Remember that we can lower and raise the indices with the metric.
20Exercise: Show that the Ricci tensor is symmetric Rµν = Rνµ.
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CHAPTER 1. BASICS 1.2. PART II - FROM NEWTON TO EINSTEIN

1.2 Part II - From Newton to Einstein

Goal: Sketch ideas which led to the formulation of GR.

1.2.1 Newton’s gravitational theory

Newton’s theory of gravitation has been very successful, think of the detailed study of
the motion of the planets, e.g. According to Newton the gravitational force between two
bodies of mass m1 and m2 placed at the positions r1,2 is given by

F21 =
Gm1m2

|r|2
r

|r|
= −F12,

here G denotes Newton’s gravitational constant21, and the vector r = r2−r1 points from
m1 to m2. Lets us now distinguish the mass m2 = M as a field-generating gravitational
mass and m1 = m as a test mass in the field of m2. We introduce a gravitational field
describing the force per unit mass f := F

m
= GM

|r|2
r

|r|
, such that FMm = mf . This field

may be expressed by a potential φ = −GM
|r|

, i.e. f = −∇φ. By assumption the mass gen-

erating the gravitational field is M , hence ∇f = 4πGMδ3 (r). Therefore, if we replace
the pointmass by a continuous matter distribution we obtain the field equation for the
gravitational potential ∇2φ = −4πGρ (r). In summary the characteristic properties of
Newton’s gravitational theory are: (i) It is a scalar theory (i.e. has a scalar potential φ
and therefore a scalar source of the field, the source being the mass-density of the mate-
rial distribution). (ii) The field equation is a linear partial differential equation of second
order. (iii) The theory uses the pre-relativistic concepts of absolute space and absolute
time, the field φ has no dynamic properties. Consequently Newton’s theory represents
an action at a distance theory. Nevertheless Newtonian gravity is a successful theory
on certain length and time scales, a search for a new relativistic theory of gravitation
should therefore be guided by the demand for an appropriate limit in which it reduces
to Newton’s theory.

1.2.2 How to formulate a relativistic gravity theory

A relativistic generalization of Newtonian gravity should at least make use of the
spacetime concepts which we already know from special relativity. In special relativ-
ity continuous matter is described by the symmetric stress-energy-momentum tensor

Tµν = T(µν). Example: Maxwell’s stress-energy-momentum tensor for the electromag-
netic field22 MaxTµν , which has the general structure23

MaxTµν =

(

T00 T0a

Ta0 Tab

)

=

(

energy density momentum density
energy flux density momentum flux density

)

.

21In SI units we have G = 6.673(10)× 10−11 m3kg−1s−2.
22MaxTαβ = −FαµFβ

µ + 1
4gαβFµνF

µν .
23Latin indices shall run from a, b = 1, . . . , 3. Momentum flux density≡ stress.
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