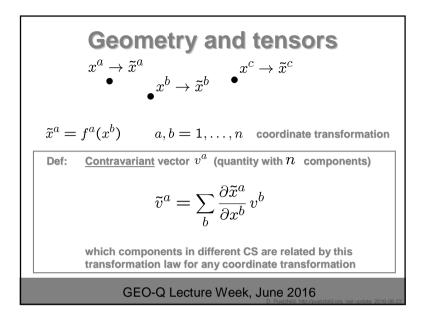
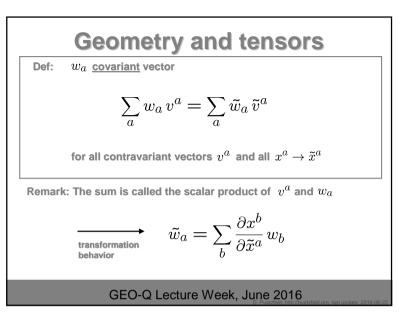
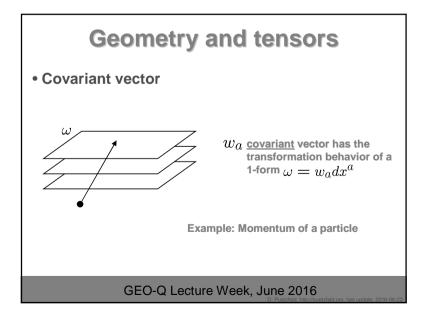
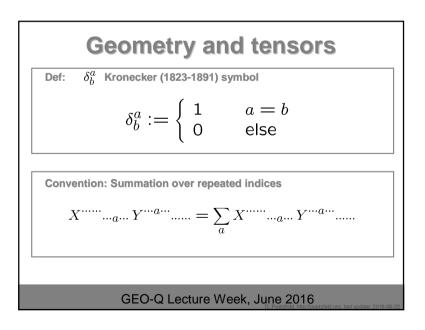


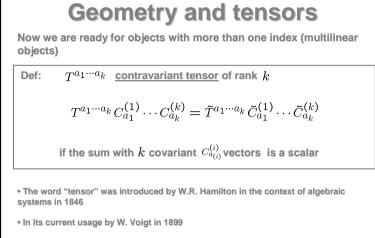
1









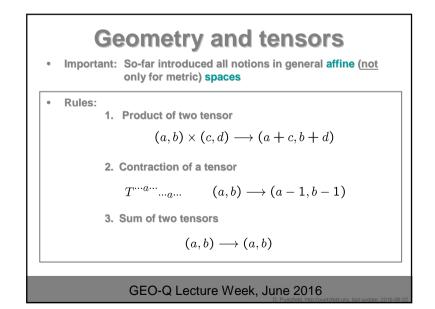


• Tensor calculus developed ~ 1890 by G. Ricci-Cubastro (1853-1925)

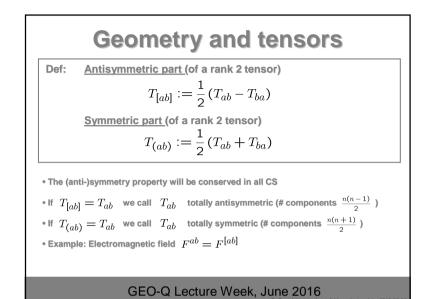
GEO-Q Lecture Week, June 2016

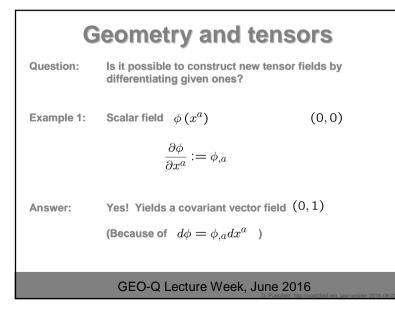
Geometry and tensors Example: Transformation behavior
$ ilde{T}^{ab} = rac{\partial ilde{x}^a}{\partial x^c} rac{\partial ilde{x}^b}{\partial x^d} T^{cd}$
Example: Electromagnetic field
$F^{ab} = \begin{pmatrix} 0 & E^x & E^y & E^z \\ -E^x & 0 & B^z & -B^y \\ -E^x & -B^z & 0 & B^x \\ -E^z & B^y & -B^x & 0 \end{pmatrix}$
GEO-Q Lecture Week, June 2016

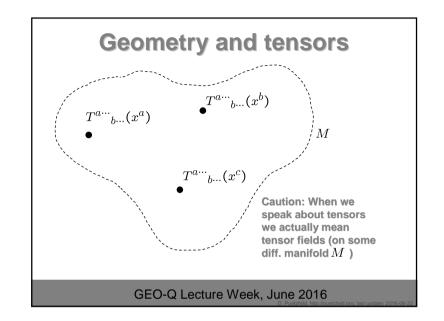
Geometry and tensors
Def: $T^{a_1\cdots a_k}a_{k+1}\cdots a_{k+m}$ <u>mixed tensor</u> of rank (k,m)
$T^{a_1 \cdots a_k}{}_{a_{k+1} \cdots a_{k+m}} C^{(1)}_{a_1} \cdots C^{(k)}_{a_k} C^{a_{k+1}}_{(k+1)} \cdots C^{a_{k+m}}_{(k+m)} = $ $\tilde{T}^{a_1 \cdots a_k}{}_{a_{k+1} \cdots a_{k+m}} \tilde{C}^{(1)}_{a_1} \cdots \tilde{C}^{(k)}_{a_k} \tilde{C}^{a_{k+1}}_{(k+1)} \cdots \tilde{C}^{a_{k+m}}_{(k+m)}$ if the sum with k contravariant $C^{(i)}_{a_{(i)}}$ vectors and m covariant vectors $C^{a_{(i)}}_{(i)}$ is a scalar
Example: Transformation behavior rank $(1,1)$
$\tilde{T}^{a}{}_{b} = \frac{\partial \tilde{x}^{a}}{\partial x^{c}} \frac{\partial x^{d}}{\partial \tilde{x}^{b}} T^{c}{}_{d}$
GEO-Q Lecture Week, June 2016 D. Paterfeld http://puetzfeld.com. Last update: 2016-



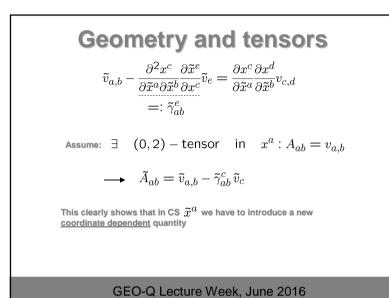
D. Puetzfeld, http://puetzfeld.org, last update: 2016-06-22

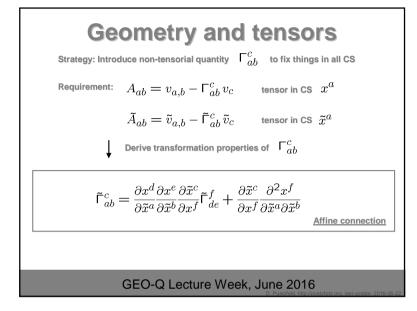


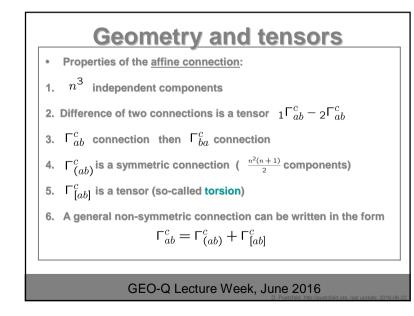


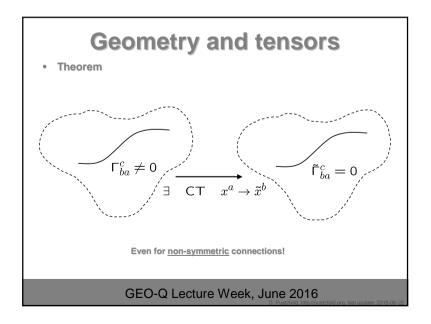


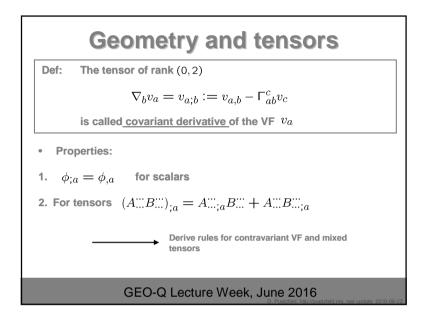
Geometry and tensors				
Example 2:	Covariant vectorfield $v_{a}\left(x^{b} ight)$ $\left(0,1 ight)$			
	$v_{a,b} = \frac{\partial v_a}{\partial x^b} \qquad \qquad x^a \to \tilde{x}^b$			
Answer:	<u>No</u> ! Does <u>not</u> yield a covariant tensor field $(0,2)$			
	$\tilde{v}_{a,b} = \frac{\partial^2 x^c}{\partial \tilde{x}^a \partial \tilde{x}^b} v_c + \frac{\partial x^c}{\partial \tilde{x}^a} \frac{\partial x^d}{\partial \tilde{x}^b} v_{c,d}$			
_	Since we are not only interested in linear but general coordinate transformations we need something new			
	GEO-Q Lecture Week, June 2016			

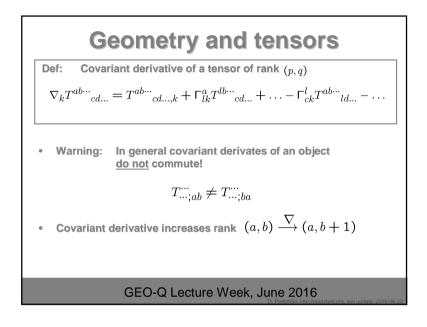


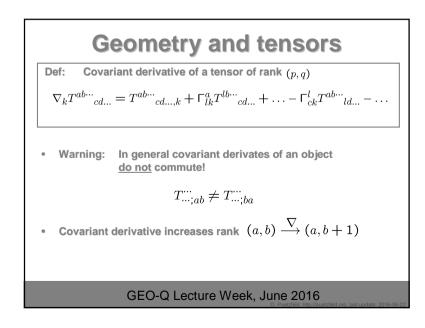


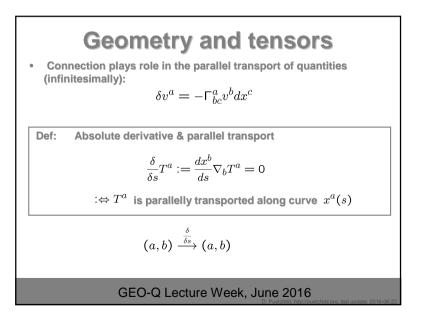


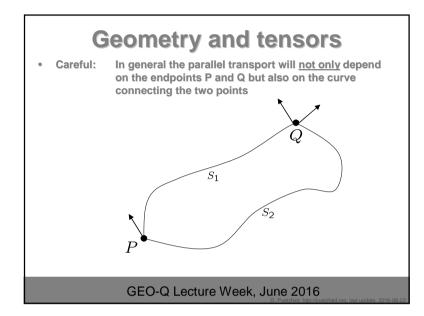


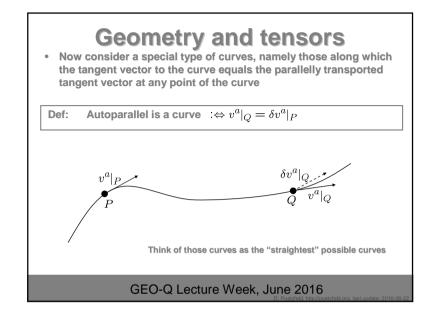






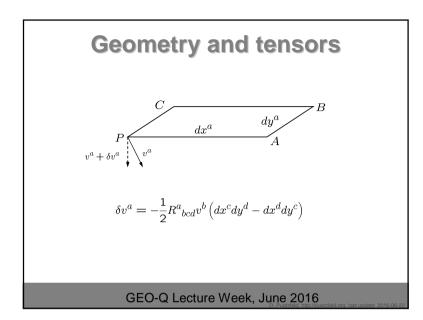


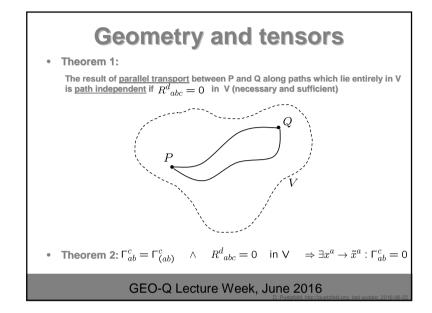


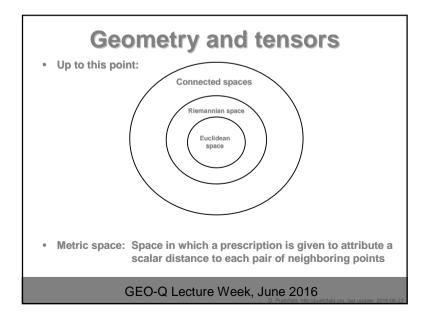


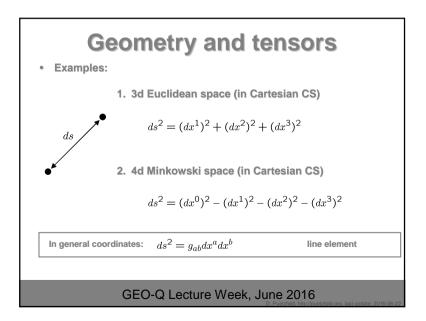
•	Geometry and tensors Differential equation which has to be fulfilled at every point of these special curves:
	$\frac{d^2x^a}{ds^2} + \Gamma^a_{bc} \frac{dx^b}{ds} \frac{dx^c}{ds} = g(s) \frac{dx^a}{ds}$
•	Remarks:
1.	Its solution will be completely determined by a point P and the direction of the tangent vector at P
2.	If Γ^a_{bc} is a non-symmetric connection only the symmetric part contributes to this equation
•	Simpler form by reparametrization $s=s(\sigma)$, choose $rac{d^2\sigma}{ds^2}=g(s)rac{d\sigma}{ds}$
	$\frac{d^2x^a}{d\sigma^2} + \Gamma^a_{bc}\frac{dx^b}{d\sigma}\frac{dx^c}{d\sigma} = 0$
	GEO-Q Lecture Week, June 2016

Compute anti-symmetric part of the 2 nd covariant derivative of a VF		
$2v_{a;[bc]} = -2\Gamma_{a[b,c]}^{d}v_{d} - 2\Gamma_{a[b}^{d}\Gamma_{d c]}^{e}v_{e} - 2\Gamma_{[bc]}^{d}v_{a;d}$ (0,3) $=:R^{d}_{abc} v_{d}$ $\downarrow \qquad (0,1)$ • Remarks $(1,3)$		
1. Antisymmetric in last two indices $R^{d}_{abc} = -R^{d}_{acb}$		
2. If $\Gamma^c_{ab} = \Gamma^c_{(ab)}$ then $R^d_{[abc]} = 0$		
3. Two possible contractions $R^a{}_{abc}$ $R^a{}_{bca}$		
GEO-Q Lecture Week, June 2016		









 $(0,2) \quad \frac{n(n+1)}{2}$

Metric tensor g_{ab}

- · In order to uniquely determined it needs to be symmetric
- In general Riemannian spaces the metric can be arbitrarily functions of the coordinates
- In general not possible to reduce them to the simple form as in Minkowski or Euclidean space
- Allows us to construct a scalar $g_{ab\,1}dx^a\,_2dx^b$, which generalizes the scalar product from Euclidean space
- Remember: In affine spaces (non-metric!) we could form the scalar product only from a covariant and a contravariant vector
- · Allows for the definition of a covariant equivalent to a contravariant vector:

$$g_{ab}v^o = v_o$$

GEO-Q Lecture Week, June 2016

Geometry and tensors

 Hence we can raise and lower indices with the metric, generalization to tensors of any rank is straightforward:

$$T^{ab\cdots}_{ef\cdots}g_{bk} = T^a{}_k{}^{\cdots}{}_{ef\cdots}$$

- Note: The fundamental distinction between contravariant and covariant tensors does <u>not</u> exist in Riemannian spaces!
- In analogy to Euclidean space we can postulate that the scalar product defines the angle between two vectors

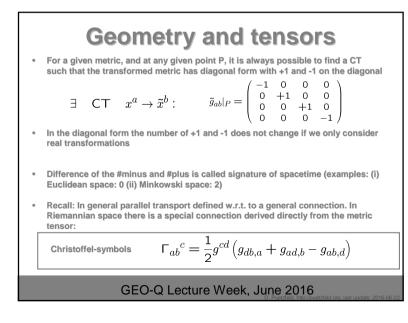
$$\cos(X,Y) = \frac{g_{ab}X^aY^b}{\sqrt{\left|g_{ab}X^aX^b\right|}\sqrt{\left|g_{ab}Y^aY^b\right|}}$$

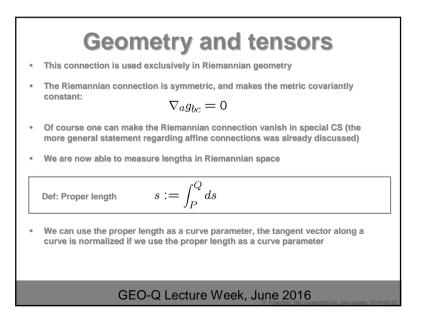
• The contravariant form of the metric is given by:

$$g_{ab}g^{bc} = \delta^a_c$$

 We will actually work in pseudo-Riemannian spacetime, i.e. metric can be (positive, negative, in)-definite

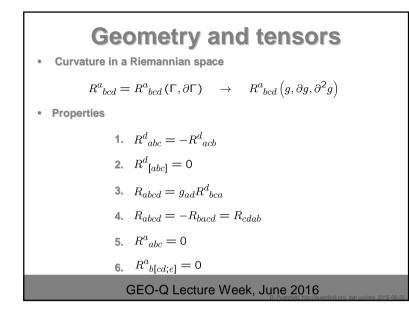
GEO-Q Lecture Week, June 2016

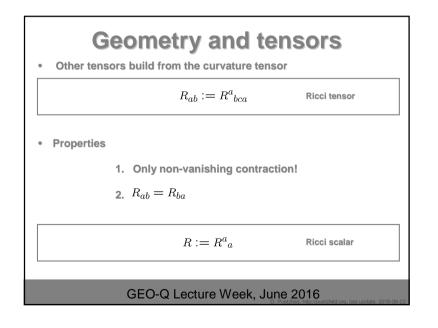


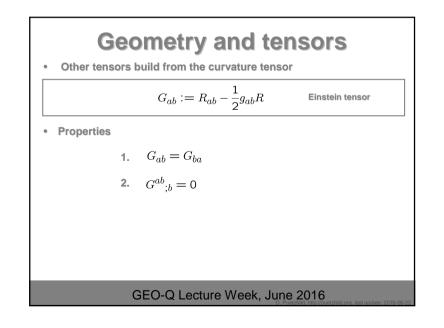


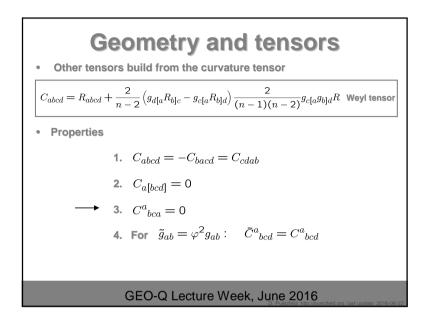


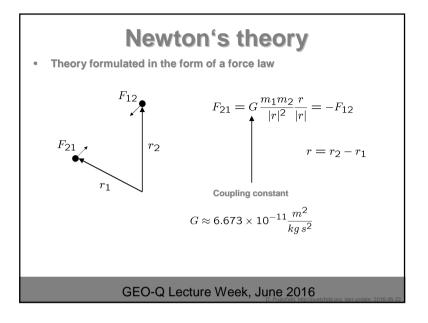
GEO-Q Lecture Week, June 2016

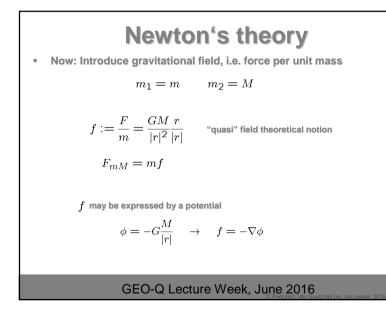


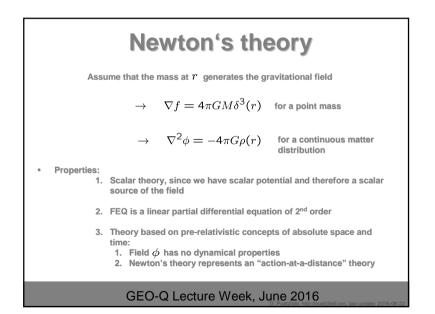


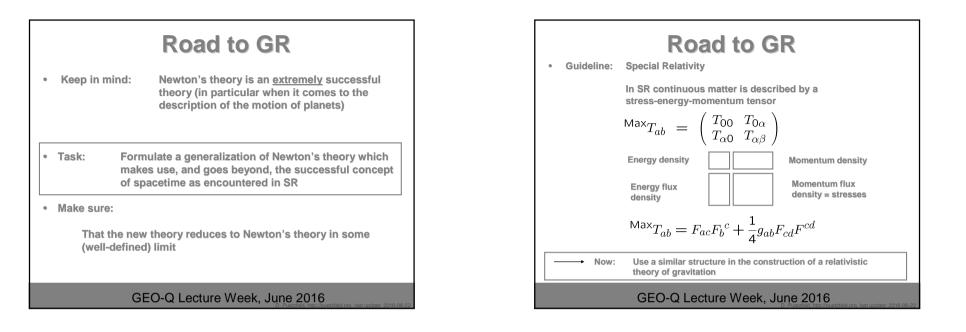


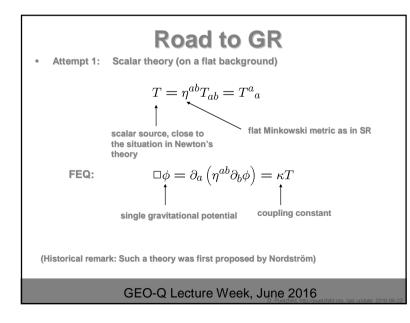


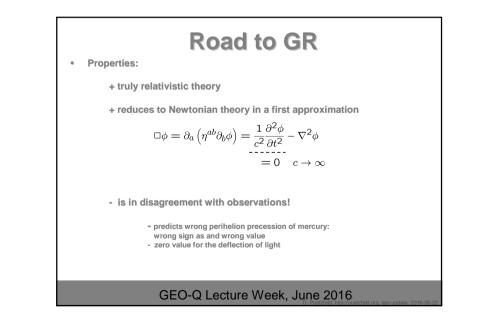


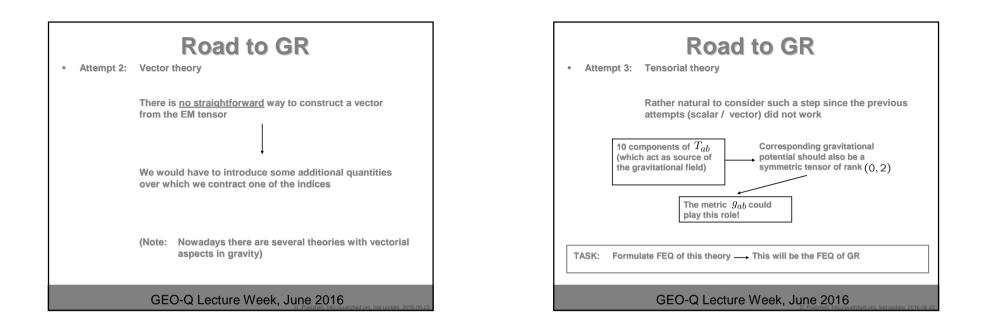


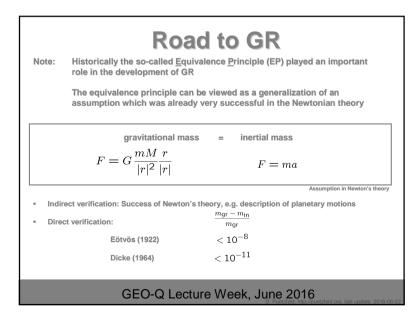


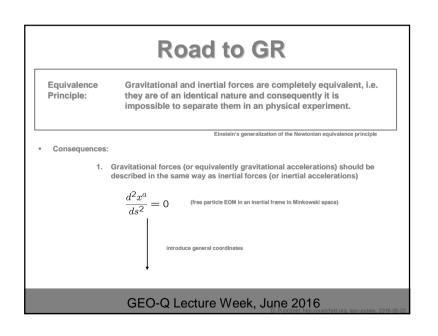


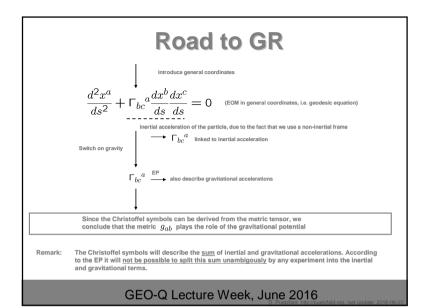


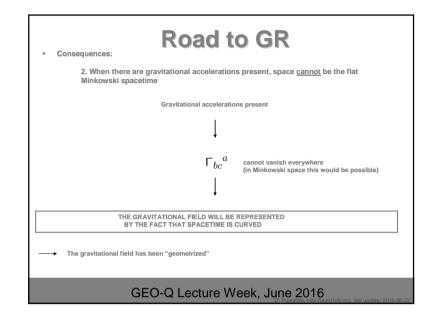


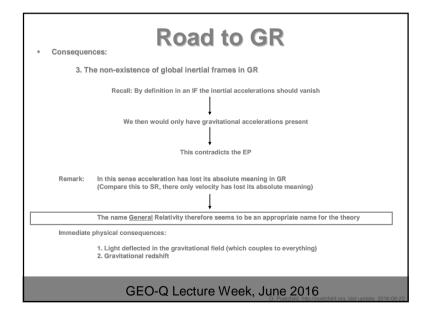


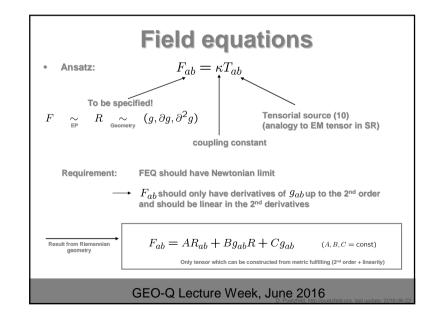


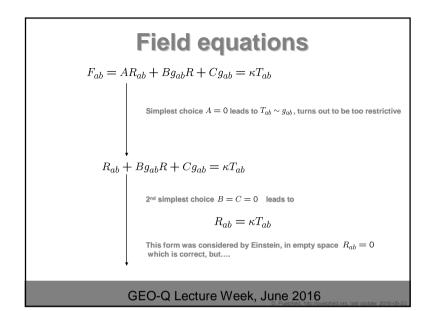


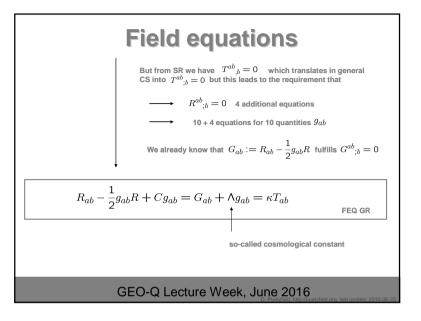


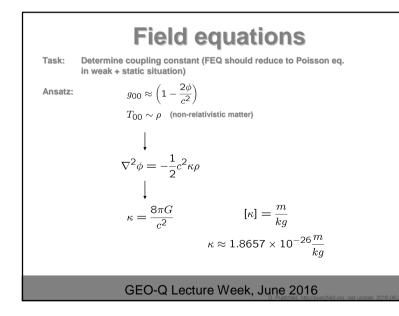


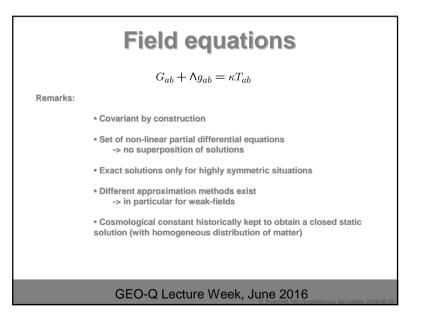


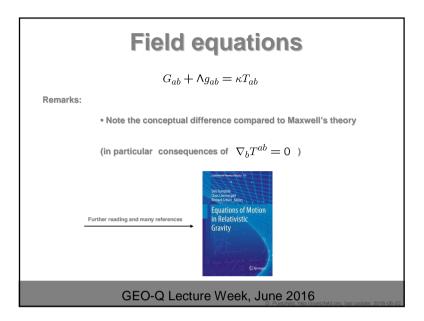












Linearized field equations
Assumptions:
1. Exist class of Cartesian-like CS:
$$|g_{ab} - \eta_{ab}| \ll 1$$

2. Asymptotic flatness $g_{ab} \rightarrow \eta_{ab}$ $(r \rightarrow \infty)$
 $g_{ab} = \eta_{ab} + \varepsilon h_{ab} + \varepsilon^2 h'_{ab} + \cdots$
 $\longrightarrow g^{ab} = \eta^{ab} - \varepsilon h^{ab}$
 $h^{ab} := \eta^{ac} \eta^{bd} h_{cd}$
GEO-Q Lecture Week, June 2016

Linearized field equations

$$\downarrow \\
R = \eta^{ab}R_{ab} = \frac{1}{2}\varepsilon \Box h - \varepsilon \eta^{ac} \eta^{bd} k_{ab,cd} \\
\downarrow \\
R_{ab} - \frac{1}{2}\eta_{ab}R = \kappa T_{ab} \\
\downarrow \\
\varepsilon \Box k_{ab} - \varepsilon \eta^{cd} (k_{ca,bd} + k_{cb,ad}) + \varepsilon \eta_{ab} \eta^{ce} \eta^{df} k_{cd,ef} = 2\kappa T_{ab} \\
\downarrow \\
| \times \partial^{b} \rightarrow LHS = 0 \\
\downarrow \\
\eta^{bc} T_{ab,c} = 0$$
GEO-Q Lecture Week, June 2016

