Lecture
General Relativity — Field equations

Comments and Contact information:
corrections regarding this dirk.puetzfeld@zarm.uni-bremen.de
handout are welcome! bitpi/ipuetzteld.org

Geometry and tensors
* Scalar

REC

Single numerical value,
independent of coordinate

. (,O(CUC) system

. (@)

o=@

Example: Charge of a particle
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Geometry and tensors

e Coordinates

i

° Setof a,b,¢c =1,...,n numbers

« Different values, depending on CS
* We want to formulate physical laws ina  form invariant manner
* We want formalism which appliesto  any CS (not only Cartesian)

Geometry and tensors

» Contravariant vector

a _ ra
z = f(N)
A4 dA
a
V™ tangent vector to the curve
is an prototype of what one
contravariant  vector
_dx?
dA

Example: Velocity of a particle




Geometry and tensors

z* — z¢ x¢ — ¢
°
° xb N a:b
~a __ ras..b _ ) .
74 = f4%z”) a,b=1,...,n coordinate transformation

Def:  Contravariant_vector v® (quantity with  Tlcomponents)

ors

~q b

v —E —v
5 dxb

which components in different CS are related by thi s
transformation law for any coordinate transformatio n

Geometry and tensors

» Covariant vector

w
/ Wgq covariant vector has the
transformation behavior of a
/ 1-form w = wadxa

Example: Momentum of a particle
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Geometry and tensors

Def: Wq covariant_ vector

ZU)QUCL:Z'LTJ@’D'G‘
a a

for all contravariant vectors v%andall z% — ¢

Remark: The sum is called the scalar product of v® and waq

Ol
079

—> ot —

Waq — g wp
transformation
behavior b

Geometry and tensors

Def: 6g Kronecker (1823-1891) symbol

50— 1 a=1»
b 0 else

Convention: Summation over repeated indices




Geometry and tensors

Now we are ready for objects with more than one ind  ex (multilinear
objects)

Def: T91ak  contravariant tensor of rank k

Ta1-ay, 05,}) . éf) — faiag C’é}) ... C'gf)

(O

if the sum with kcovariant ~ Cagpctors isa  scalar

« The word “tensor " was introduced by W.R. Hamilton in the context of al ~ gebraic
systems in 1846

« In its current usage by W. Voigt in 1899

« Tensor calculus developed ~ 1890 by G. Ricci -Cubastro (1853-1925)

Geometry and tensors

Def:  T%"%q ;. ap,, Mmixedtensor ofrank (k,m)
1 k) ~Qk+1 af —
TR Myt Cél)"’ ‘gk)c(kil)"'o(ki:ln) -
~ ~(1 ~(k ~Qf =}
o akak+1"'ak+m C1621) T C‘gk)c(kj-ll) e C(lcrv:z)

if the sum with &k contravariant Cég)vectors and m

covariant vectors cé‘;') is a scalar

Example: Transformation behavior rank (1,1)
0% 0z
b— = " A~f
Oxc b

Qa C

d
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Geometry and tensors

Example: Transformation behavior

ab _ 081 0%" g
dz¢ Oxd

Example: Electromagnetic field

0 T BEY EF
—-ET 0 B* —-BY
—E* —-B* O Bt
—-E* BY —-B* O

Geometry and tensors

« Important: So-far introduced all notions in general  affine (not
only for metric) spaces

¢« Rules:
1. Product of two tensor

(a,b) x (c,d) — (a+c,b+d)
2. Contraction of a tensor
7% . . (a,b) — (a—1,b—1)
3. Sum of two tensors

(a,0) — (a,b)




Geometry and tensors Geometry and tensors
Def:  Antisymmetric part (ofarank 2tensory || | e P
1 LT T -
T[ab] = 5 (Tap — Tha) Ta"'b...(xb) \
! [ ] Y
! T (%) |
Symmetric part (of a rank 2 tensor) ! b-- :
1 | ° I M
T(ab) = > (Tap + Ta) . //
) ! ) \“~\ T . (2% o
« The (anti -)symmetry property will be conserved in all CS L ° ,
If Tiqp) = Tap Wwecall Ty, totally antisymmetric (# components w) \\\ ,," Caution: When we
Y ,  speak about tensors
i Tygpy = Tap Wecall Ty totally sy mmetric (# components w N . we actually mean
« Example: Electromagnetic field ~ Fo0 = plabl S et :jﬁf?szaf:‘]?]lgij (0?\43)0me

Geometry and tensors Geometry and tensors

. . . ) . . b
Question: Is it possible to construct new tensor fields by Example 2: Covariant vectorfield Va (m ) (0,1)
differentiating given ones?
ov ~
] Vg = —Z 2% — 7
Example 1: Scalar field ¢ (z®) (0,0) ’ oz
¢ ) . )
e =¢a Answer: No! Does not yield a covariant tensor field (0,2)
z
- 82z Hz¢ 5z
v
Answer: Yes! Yields a covariant vector field (0, 1)

ab = pzapzs ¢ T pzagzb
(Because of  d¢ = ¢ qdz® )

Since we are not only interested in linear but
—-

general coordinate transformations we need
something new

D. Puetzfeld, http://puetzfeld.org, last update: 2016-06-22



Geometry and tensors

- 82z¢ 83¢_  Oxcoxd
v, — Ve = v
@b ™ Hzagzbage ¢ 9zaazd ¢4

—_— e
= Yab
assume: 3 (0,2) —tensor in z%: Ay =gy
— Agp = Tap — Tap e

This clearly shows thatinCS ~ Z%e have to in

troduce a new
coordinate dependent _ quantity

Geometry and tensors

« Properties of the affine connection :

1. n3 independent components
2. Difference of two connections is a tensor 1Moy — ol Sy

3. [, connection then [§ onnection

4. rfab) is a symmetric connection ( W)mponen ts)
5. Ffab] is a tensor (so -called torsion )
6.

A general non -symmetric connection can be written in the form

Cab = Tap) + Tap)
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Geometry and tensors

Strategy: Introduce non -tensorial quantity rgb to fix things in all CS

Requirement: Aab =g b — I‘flb Ve tensorincs x%
Aab = 1’}&71) — ng Ve tensorincs %
l Derive transformation properties of rgb

e _ 029205 Ly | 03¢ 9%af
ab ™ 5za9zb oz f de T 92 f 99970

Affine connection

Geometry and tensors

¢« Theorem

Even for non-symmetric connections!




Geometry and tensors

Def: The tensor of rank (0,2)

Vipva = Vg:p := Vg p — [ gpve

is called _covariant derivative _of the VF Va

)

1.

2.

Properties:
G0 = P for scalars
Fortensors  (AlBl)., = AlL,Bl 4+ AlBl,

Derive rules for contravariant VF and mixed
tensors

_—

Geometry and tensors

Def:  Covariant derivative of a tensor of rank  (p, q)

VAT e = T e g+ T ca o =TT g, —

)
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Warning:  In general covariant derivates of an object

do not commute!

v
Covariant derivative increases rank ~ (a,b) — (a,b+ 1)

Geometry and tensors

Def:  Covariant derivative of a tensor of rank  (p, q)

VET e = T e e+ TR i+ =TT g, —

Warning:  In general covariant derivates of an object

do not commute!

Covariant derivative increases rank

(@.b) % (a,b+ 1)

Geometry and tensors

¢ Connection plays role in the parallel transport of quantities
(infinitesimally):
Sv? = —I_gcvbdmc

Def:  Absolute derivative & parallel transport
) dab
T = TN, T =
ss ds °

1< T is parallelly transported along curve — z%(s)

(a,b) =5 (a,b)




Geometry and tensors

e Careful: In general the parallel transport will  not only depend
on the endpoints P and Q but also on the curve
connecting the two points

Geometry and tensors

« Differential equation which has to be fulfilled at every point o f
these special curves:

d2 g0 dzb dzt dx?
T arem ™ o handll
ds2 F e ds ds 9(s) ds

¢ Remarks:

1. lIts solution will be completely determined by a poi nt P and the direction of the
tangent vector at P

2. If T§, is a non -symmetric connection only the symmetric part contri butes to this
equation

2
¢ Simpler form by reparametrization s=s(s) , choose ‘;7‘2’ = g(s)j—a
S S

Prt | daldat _
do? do do
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Geometry and tensors

* Now consider a special type of curves, namely those along which
the tangent vector to the curve equals the  parallelly transported
tangent vector at any point of the curve

Def:  Autoparallel isacurve :& v%g = §v®p

Think of those curves as the “straightest " possible curves

Geometry and tensors

¢ Task: Compute anti -symmetric part of the 2 " covariant
derivative of a VF

— d d e d
2g:1be] = 20 g, vd = 2T ol gjqve = 2 [pejVaid
(0,3) TTTTTTTTTTOTTTTTTTTTTTTTT (1,2)(0,2)
= R%pc V4
1 (0,1)
¢« Remarks (1,3)
1. Antisymmetric in last two indices Rdabc = —Rdacb

2.1f Tg =Ty then R, =0

3. Two possible contractions R%pe R%.




Geometry and tensors

dx? @’

a

‘____“U
]
b

v® 4 §v®

1
v = —ERabcdvb <d:ccdyd - dxddyc)

Geometry and tensors

* Up to this point:

Connected spaces
Riemannian Space

Euclidean
space

« Metric space: Space in which a prescription is giv en to attribu te a
scalar distance to each pair of neighboring points
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Geometry and tensors

¢ Theorem 1:

The result of parallel transport between P and Q along paths which lie entirely in V
is path independent _ if Rdabc = 0 in V (necessary and suff icient)

e Theorem 2: rgb = rfab) A Rdabc =0 inV =3z2%-53%: ng =0

Geometry and tensors

e Examples:

1. 3d Euclidean space (in Cartesian CS)

[ J
ds? = (da)? + (dz?)? + (dz)?
ds
° 2. 4d Minkowski space (in Cartesian CS)
ds? = (da®)? — (dz1)? — (dz?)? — (da®)?
In general coordinates: ds? = gabdx“dmb line element




Geometry and tensors

Metric tensor  Gab (0.2) "(n; 2

In order to uniquely determined it needs to be symm etric

In general Riemannian spaces the metric can be arbi  trarily funct ions of the
coordinates

In general not possible to reduce them to the simpl e form asin Minkowski or
Euclidean space

Allows us to construct a scalar 9ab 1dza Qdccb , which generalizes the scalar
product from Euclidean space

Remember: In affine spaces (non -metric!) we could form the scalar product only
from a covariant and a contravariant vector

Allows for the definition of a covariant equivalent to a contravariant vector:

gabvb = Va

Geometry and tensors

Hence we can raise and lower indices with the metri ¢, generaliza tion to tensors of
any rank is straightforward:

T ro gpe = T% e ...

Note: The fundamental distinction between  contravariant and covariant tensors
does not exist in Riemannian spaces!

In analogy to Euclidean space we can postulate that the scalar p roduct defines
the angle between two vectors

abX ay?
Vlga XX lgasyey?|

The contravariant form of the metric is given by:

cos(X,Y) =

gabgbc = 62

We will actually work in pseudo -Riemannian spacetime , i.e. metric can be
(positive, negative, in) -definite

Geometry and tensors

For a given metric, and at any given point P, it is always possi ble to find a CT
such that the transformed metric has diagonal form with +1 and -1 on the diagonal

10 0 o0
. . | o410 o
3 CT 2030 dalP=1| 0o o 41 o

0O o0 o0 -1

In the diagonal form the number of +1 and -1 does not change if we only consider
real transformations

Difference of the #minus and #plus is called signat  ure of spacetime (examples: (i)
Euclidean space: 0 (i) Minkowski space: 2)

Recall: In general parallel transport defined ~ w.r.t. to a general connection. In
Riemannian space there is a special connection deri  ved directly from the metric
tensor:

Geometry and tensors

This connection is used exclusively in Riemannian g eometry
The Riemannian connection is symmetric, and makest  he metric covariantly
constant:

Vagpe =0

Of course one can make the Riemannian connection va  nish in speci al CS (the
more general statement regarding affine connections was already discussed)

We are now able to measure lengths in Riemannian spa  ce

Q
Def: Proper length s = /P ds

c_ lgcd

Christoffel -symbols I ab 5

(gdb,a + 9adp — gab,d)
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We can use the proper length as a curve parameter,t  he tangent v ector along a
curve is normalized if we use the proper length as a curve param eter




Geometry and tensors

Now: Use the proper length in the autoparallel equation

}

Result: The proper length S is an affine pa rameter of th e autoparallel

du®
d + I—bcaub“C =0 < Ua;bub =0 Geodesic equation
S 1
i
_. &
T ds

In Riemannian spaces the connection will be given by the Christoffel symbol
Autoparallels in Riemannian space will be called geodesics

Geodesics between two points are curves of  extremal length

)

Geometry and tensors

Other tensors build from the curvature tensor

Rap := R%cq Ricci tensor

Properties
1. Only non -vanishing contraction!

2. Rap = Ripq

R:= R%, Ricci scalar
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Geometry and tensors

Curvature in a Riemannian space
R%eq = R%eq (T,07) = R%q(9,09,0%)
Properties
1 Rdabc = _Rdacb
d _
2. R [abe] = 0
3. R, ;=g R%
abed = ad*l bea
4. Raped = —Rpacd = Redab
5 R%p.=0

6. Rab[cd;e] =0

Geometry and tensors

Other tensors build from the curvature tensor

Gap = Ryp — %gabR Einstein tensor
* Properties
1 Gab = Ga
2. g%, =0

10



Geometry and tensors

¢ Other tensors build from the curvature tensor

n—

2 2
Cabed = Raped + ——— (gd[aRb]c - gc[aRb]d) mgﬂlagb]dR Weyl tensor

* Properties
1. Cabed = —Chacd = Cedab
2. Cylbeaq) =0
T 3 C%e=0

~ 2 . 2 _
4. For Gab=%9ap: C%dq = C%ca

Newton ‘s theory

* Now: Introduce gravitational field, i.e. force per unit mass

m]p=m mo = M
F _ GMr
fi=—= 5T “quasi” field theoretical notion
mo|rf# ||
FmM = mf

f may be expressed by a potential
M
I]

$=-G - [=-V¢
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Newton ‘s theory

e Theory formulated in the form of a force law

mimp r

72 |r|

—F12

r=r1ryp—1r]

Coupling constant

m2

G~ 6.673x 10711
kg s2

Newton ‘s theory

Assume that the mass at Tgenerates the gravitat  ional fiel d

= Vf=A4rGM&3(r) forapoint mass

— V2¢ = —4nGp(r)  fora continuous matter
distribution

Properties:
1. Scalar theory, since we have scalar potential and t  herefore a sc alar
source of the field

2. FEQ s a linear partial differential equation of 2 "4 order

3. Theory based on pre -relativistic concepts of absolute space and
time:
1. Field ¢ has no dynamical properties
2. Newton's theory represents an “action -at-a-distance " theory

11



)

Keep in mind: Newton 's theory is an extremely successful

Road to GR

theory (in particular when it comes to the
description of the motion of planets)

e Task: Formulate a generalization of Newton 's theory which
makes use, and goes beyond, the successful concept
of spacetime as encountered in SR

* Make sure:

That the new theory reduces to Newton s theory in some
(well -defined) limit

Attempt 1:

FEQ:

(Historical remark: Such a theory was first propose  d by Nordstr 6m)

Road to GR

Scalar theory (on a flat background)

T =T, =T%

|

scalar source, close to
the situation in Newton 's
theory

flat Minkowski metric as in SR

0¢ = da (n"*0y0) = KT

single gravitational potential coupling constant
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Road to GR

¢ Guideline:  Special Relativity

In SR continuous matter is described by a
stress -energy -momentum tensor

Maxp (Too T0a>

Tao Ta,@
Energy density I:I I:I Momentum density
Energy flux Momgntum flux
density density = stresses

1
MaxTp = FacFy© + 29abFeal’ cd

— Now: Use a similar structure in the construction of a re lativistic
theory of gravitation

Road to GR

* Properties:
+ truly relativistic theory

+ reduces to Newtonian theory in a first approximat  ion

- is in disagreement with observations!

- predicts wrong perihelion precession of mercury:
wrong sign as and wrong value
- zero value for the deflection of light

12



Road to GR

e Attempt2: Vector theory
There is no straightforward _ way to construct a vector

from the EM tensor

We would have to introduce some additional quantiti es
over which we contract one of the indices

(Note: Nowadays there are several theories with  vectorial
aspects in gravity)

Road to GR

e Attempt3: Tensorial theory

Rather natural to consider such a step since the pr  evious
attempts (scalar / vector) did not work

10 components of  Tgp Corresponding gravitational
(which act as source of , potential should also be a
the gravitational field) symmetric tensor of rank (0, 2)

/

The metric  gabcould
play this role!

TASK:  Formulate FEQ of this theory —Fhiswillbet he FEQ of GR

Road to GR

Note: Historically the so -called Equivalence Principle (EP) played an important
role in the development of GR

The equivalence principle can be viewed as a genera lization of a n
assumption which was already very successful in the Newtonian th eory

gravitational mass = inertial mass
mM r
- 20 F =ma
[r[< ||

Assumption in Newton 's theory

« Indirect verification: Success of Newton s theory, e.g. description of planetary motions

mgr — mip

< Direct verification: mgr
Ebtvos (1922) <1078
Dicke (1964) <1071t
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Road to GR

Principle: they are of an identical nature and consequently it is
impossible to separate them in an physical experime nt.

Equivalence Gravitational and inertial forces are completely eq uivalent, i.e .

Einstein 's ion of the N nian princ iple
+ Consequences:

1. Gravitational forces (or equivalently gravitational acceleration s) should be
described in the same way as inertial forces (orin  ertial accele rations)

d2z
ds?

— 0 (free particle EOM in an inertial frame in ~ Minkowski space)

introduce general coordinates

13



Road to GR

introduce general coordinates

d2z0 o dab dz¢

=0 (EOM in general coordinates, i.e. geodesic equation )

inertial acceleration of the particle, due tothe f  act that we u se a non -inertial frame

— a
Mpe®  linked to inertial acceleration
Switch on gravity

EP
a ; )
Mpe” ——» also describe gravitational accelerations

|

Since the Christoffel symbols can be derived from the metric tensor, we
conclude that the metric  ggpolays the role o f the gravita tional potential

Consequences:

2. When

Road to GR

there are gravitational accelerations prese  nt, space cannot be the flat

Minkowski spacetime

Gravitational accelerations present

|

rbca cannot vanish everywhere
(in Minkowski space this would be possible)

Remark: The Christoffel symbols will describe the  sum of inertial and gravitational accelerations. Accord ing

to the EP it will not be possible to split this sum __unambigously by any experiment into the inertial
and gravitational terms.

THE GRAVITATIONAL FIELD WILL BE REPRESENTED
BY THE FACT THAT SPACETIME IS CURVED

Road to GR

3. The non -existence of global inertial frames in GR

Consequences:

Recall: By definition in an IF the inertial acceler  ations should vanish

l

We then would only have gravitational accelerations present

This contradicts the EP

Remark: In this sense acceleration has lost its absolute me  aning in GR
(Compare this to SR, there only velocity has losti  ts absolute m eaning)

|

— The gravitational field has been  “geometrized "

The name General Relativity therefore seems to be an appropriate nam e for the th eory

Immediate physical consequences:

1. Light deflected in the gravitational field (whic h couples to everything)
2. Gravitational = redshift
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Ansatz :

To be

EP

Field equations

Fop = kTyp

specified!
~ P) 32 Tensorial source (10)
Geometry (9,99,0%9) (analogy to EM tensor in SR)

coupling constant

Requirement: FEQ should have Newtonian limit

Result from Riemannian
geometry

— F,p should only have derivatives of  gap tothe 2 " order
and should be linear in the 2 " derivatives

Fab = ARab + BgabR + Cgab (A, B,C = const)

Only tensor which can be constructed from metric fu ffilling (2 " order + linearity)

14



Field equations

Fop = ARgp + BgapR + Cgap = £Tp

Rap + BgapR + Cgap = T4

2 simplest choice B = C = 0 leads to

Rop = Ty

which is correct, but ...

Simplest choice A = Qeadsto Tap ~ 9gab, turns out to be too restrictive

This form was considered by Einstein, in empty spac e Ry =0

Field equations

Task: Determine coupling constant (FEQ should reduce to P oisson eq.
in weak + static situation)
. 2¢
Ansatz : goo ~ (1 — C_2>

Too ~ p (non-relativistic matter)

l

1
V2¢> = —Eczlip

|

8rG
K=

(] =%

k~ 1.8657 x 10726
kg
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Field equations

But from SR we have Tab,b =0 which translatesin general
CSinto T"b;,, = 0 but this leads to the r  equirement th at

—_ Rab;b =0 4 additional equations

— 10 + 4 equations for 10 quantities ~ Jab

1
We already know that Glp := Rgp — EgabR fulfills Gab;b =0

1
Rap — EgabR + Cgab = Gap + Ngap = KTy

i FEQ GR

so-called cosmological constant

Remarks:

Field equations

Gab + Ngap = KTyp

« Covariant by construction

« Set of non -linear partial differential equations
-> no superposition of solutions

« Exact solutions only for highly symmetric situation s

« Different approximation methods exist
-> in particular for weak -fields

« Cosmological constant historically kept to obtain a closed stat ic
solution (with homogeneous distribution of matter)
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Field equations

Gap + Ngap = &Tygp
Remarks:

* Note the conceptual difference compared to Maxwell s theory

(in particular  consequences of VbTab =0)

Equations of Motion
Further reading and many references in Relativistic

Gravity

Linearized field equations
v

1
Cap® = 55776d (haba + hadp — hava)

'

1
Ruped = 55 (hbc,ad + had,bc - hac,bd - hbd,ac)

'

1 1
Ry = §5Dhab - Eand (kca,bd + kcb,ad)

B ' 1
=:1° hab.cd kap 1= hap — Enabh
h:i= 77abhab
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Linearized field equations

Assumptions:
1. Existclass of Cartesian -like CS: |9ab - 77ab| <1

2. Asymptotic flatness Yab — Nab (r = o0)
_ 247
Yab = Tab + €hap + € hgy + -

R gab — nab o Ehab

hab = nacnbd hcd

Linearized field equations
!

1
R= nabRab = EEDh - Enacnbdkab,cd

.

1
Ry — EnabR = KTy

'

e0kgp — ETICd (kca,bd + kcb,ad) + Enabncendfkcd,ef = 2xTy,

|x8® — LHS=0

'

nbcTab,c =0

16



Linearized field equations
Consider CT of the form: 70 = 2% 4 5{“ ( xb)
—>  hap = hap + 288,
—> kap = Kap + 26€(4 ) — eMaré e
LA 1kap.e = 1"Fap e + €nap0E°

holds (always possible, sol. of inh.wave eq.)

nbclzab,c =0
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l Choose &% for given kg such that ﬂbckab,c=€77ab‘:‘§b

Linearized field equations
!

e0kyp = 26Ty,

Remarks:
1. Note the analogy with Maxwell 's equations in Lorentz gauge

2. Solution can be written down immediately for known source (i.e.
retarded solution, over Minkowskian past light cone)
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